These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 3231685)

  • 1. Photoexcitation of rhodopsin: conformation changes in the chromophore, protein and associated lipids as determined by FTIR difference spectroscopy.
    DeGrip WJ; Gray D; Gillespie J; Bovee PH; Van den Berg EM; Lugtenburg J; Rothschild KJ
    Photochem Photobiol; 1988 Oct; 48(4):497-504. PubMed ID: 3231685
    [No Abstract]   [Full Text] [Related]  

  • 2. Carboxyl group involvement in the meta I and meta II stages in rhodopsin bleaching. A Fourier transform infrared spectroscopic study.
    de Grip WJ; Gillespie J; Rothschild KJ
    Biochim Biophys Acta; 1985 Aug; 809(1):97-106. PubMed ID: 2992584
    [TBL] [Abstract][Full Text] [Related]  

  • 3. On the state of chromophore protonation in rhodopsin: implication for primary photochemistry in visual pigments.
    Narva D; Callender RH
    Photochem Photobiol; 1980 Aug; 32(2):273-6. PubMed ID: 6254097
    [No Abstract]   [Full Text] [Related]  

  • 4. Fourier transform infrared difference spectra of intermediates in rhodopsin bleaching.
    Rothschild KJ; Cantore WA; Marrero H
    Science; 1983 Mar; 219(4590):1333-5. PubMed ID: 6828860
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chromophore of a long-lived photoproduct formed with metarhodopsin III in the isolated frog retina.
    Azuma M; Azuma K
    Photochem Photobiol; 1984 Oct; 40(4):495-9. PubMed ID: 6334322
    [No Abstract]   [Full Text] [Related]  

  • 6. The photoreaction of vacuum-dried rhodopsin at low temperature: evidence for charge stabilization by water.
    Ganter UM; Schmid ED; Siebert F
    J Photochem Photobiol B; 1988 Dec; 2(4):417-26. PubMed ID: 3149997
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Photophysics of light transduction in rhodopsin and bacteriorhodopsin.
    Birge RR
    Annu Rev Biophys Bioeng; 1981; 10():315-54. PubMed ID: 7020578
    [No Abstract]   [Full Text] [Related]  

  • 8. [Effect of gamma irradiation on a solution of the visual pigment rhodopsin].
    Pushkareva TV; Sverdlov AG
    Radiobiologiia; 1975; 15(4):596-9. PubMed ID: 1188057
    [No Abstract]   [Full Text] [Related]  

  • 9. Transient light-induced conformational changes in rhodopsin.
    Daemen FJ; Bonting SL
    Biophys Struct Mech; 1977 Jun; 3(2):117-20. PubMed ID: 890046
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On the mechanism of wavelength regulation in visual pigments.
    Kakitani H; Kakitani T; Rodman H; Honig B
    Photochem Photobiol; 1985 Apr; 41(4):471-9. PubMed ID: 4011704
    [No Abstract]   [Full Text] [Related]  

  • 11. Evidence for rhodopsin refolding during the decay of Meta II.
    Rothschild KJ; Gillespie J; DeGrip WJ
    Biophys J; 1987 Feb; 51(2):345-50. PubMed ID: 3828465
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Photosensitivities of iodopsin and rhodopsins.
    Okano T; Fukada Y; Shichida Y; Yoshizawa T
    Photochem Photobiol; 1992 Dec; 56(6):995-1001. PubMed ID: 1492139
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Conformational and functional changes induced in vertebrate rhodopsin by photon capture.
    Chabre M
    Symp Soc Exp Biol; 1983; 36():87-108. PubMed ID: 6399792
    [No Abstract]   [Full Text] [Related]  

  • 14. Temperature and wavelength effects on the photochemistry of rhodopsin, isorhodopsin, bacteriorhodopsin and their photoproducts.
    Hurley JB; Ebrey TG; Honig B; Ottolenghi M
    Nature; 1977 Dec; 270(5637):540-2. PubMed ID: 593379
    [No Abstract]   [Full Text] [Related]  

  • 15. Behaviour of octopus rhodopsin and its photoproducts at very low temperatures.
    Tsuda M; Tokunaga F; Ebrey TG; Yue KT; Marque J; Eisenstein L
    Nature; 1980 Oct; 287(5781):461-2. PubMed ID: 7432472
    [No Abstract]   [Full Text] [Related]  

  • 16. Fourier-transform infrared difference spectroscopy of rhodopsin and its photoproducts at low temperature.
    Bagley KA; Balogh-Nair V; Croteau AA; Dollinger G; Ebrey TG; Eisenstein L; Hong MK; Nakanishi K; Vittitow J
    Biochemistry; 1985 Oct; 24(22):6055-71. PubMed ID: 4084506
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Photoisomerization efficiency in UV-absorbing visual pigments: protein-directed isomerization of an unprotonated retinal Schiff base.
    Tsutsui K; Imai H; Shichida Y
    Biochemistry; 2007 May; 46(21):6437-45. PubMed ID: 17474760
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rhodopsin bleaching and rod adaptation.
    Catt M; Ernst W; Kemp CM; O'Bryan PM
    Biochem Soc Trans; 1983 Dec; 11(6):676-8. PubMed ID: 6667776
    [No Abstract]   [Full Text] [Related]  

  • 19. Energetics of primary processes in visula escitation: photocalorimetry of rhodopsin in rod outer segment membranes.
    Cooper A; Converse CA
    Biochemistry; 1976 Jul; 15(14):2970-8. PubMed ID: 8077
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assignment of groups responsible for the "opsin shift" and light absorptions of rhodopsin and red, green, and blue iodopsins (cone pigments).
    Kosower EM
    Proc Natl Acad Sci U S A; 1988 Feb; 85(4):1076-80. PubMed ID: 3422479
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.