These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 3231685)

  • 21. Light-induced change in rhodopsin emission: phosphorescence and fluorescence.
    Andley UP; Chakrabarti B
    Photochem Photobiol; 1982 Mar; 35(3):385-90. PubMed ID: 7063554
    [No Abstract]   [Full Text] [Related]  

  • 22. Discussion to II. Light-induced conformational changes of the rhodopsin molecule.
    Biophys Struct Mech; 1977 Jun; 3(2):127-33. PubMed ID: 890048
    [No Abstract]   [Full Text] [Related]  

  • 23. Photochemical studies of 7-cis-rhodopsin at low temperatures. Nature and properties of the bathointermediate.
    Kawamura S; Miyatani S; Matsumoto H; Yoshizawa T; Liu RS
    Biochemistry; 1980 Apr; 19(8):1549-53. PubMed ID: 7378362
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Fourier transform infrared spectroscopic investigation of rhodopsin structure and its comparison with bacteriorhodopsin.
    Haris PI; Coke M; Chapman D
    Biochim Biophys Acta; 1989 Apr; 995(2):160-7. PubMed ID: 2539198
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [Spin label study of photoinduced conformational transitions in solubilized rhodopsin].
    Kalamkarov GR; Grigorian GL; Fedorovich IB; Krylova VI; Ostrovskiĭ MA
    Dokl Akad Nauk SSSR; 1976; 231(3):736-8. PubMed ID: 186244
    [No Abstract]   [Full Text] [Related]  

  • 26. Photochemistry of methylated rhodopsins.
    Govindjee R; Dancshazy Z; Ebrey TG; Longstaff C; Rando RR
    Photochem Photobiol; 1988 Oct; 48(4):493-6. PubMed ID: 3231684
    [No Abstract]   [Full Text] [Related]  

  • 27. A comparative study of the infrared difference spectra for octopus and bovine rhodopsins and their bathorhodopsin photointermediates.
    Bagley KA; Eisenstein L; Ebrey TG; Tsuda M
    Biochemistry; 1989 Apr; 28(8):3366-73. PubMed ID: 2742842
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Retinal chromophore of rhodopsin photoisomerizes within picoseconds.
    Hayward G; Carlsen W; Siegman A; Stryer L
    Science; 1981 Feb; 211(4485):942-4. PubMed ID: 7466366
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Quantitative aspects of the photochemistry of isomeric retinals and visual pigments.
    Waddell WH; Crouch R; Nakanishi K; Turro NJ
    J Am Chem Soc; 1976 Jul; 98(14):4189-92. PubMed ID: 932359
    [No Abstract]   [Full Text] [Related]  

  • 30. Picosecond absorption studies on rhodopsin and isorhodopsin in detergent and native membrane.
    Rudzki JE; Peters KS
    Biochemistry; 1984 Aug; 23(17):3843-8. PubMed ID: 6487580
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Specific photoisomerization of retinal in squid rhodopsin and metarhodopsin.
    Suzuki T; Makino M
    Biochim Biophys Acta; 1981 Jun; 636(1):27-31. PubMed ID: 7284342
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Rhodopsin-lumirhodopsin phototransition of bovine rhodopsin investigated by Fourier transform infrared difference spectroscopy.
    Ganter UM; Gärtner W; Siebert F
    Biochemistry; 1988 Sep; 27(19):7480-8. PubMed ID: 3207686
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Rhodopsin bleaching intermediates and enzyme activation in the rod outer segment.
    Knowles A
    Biochem Soc Trans; 1983 Dec; 11(6):672-4. PubMed ID: 6141965
    [No Abstract]   [Full Text] [Related]  

  • 34. Evidence that the long-lifetime photointermediate of s-rhodopsin is a receptor for negative phototaxis in Halobacterium halobium.
    Takahashi T; Mochizuki Y; Kamo N; Kobatake Y
    Biochem Biophys Res Commun; 1985 Feb; 127(1):99-105. PubMed ID: 3977930
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Fourier-transform infrared spectroscopy applied to rhodopsin. The problem of the protonation state of the retinylidene Schiff base re-investigated.
    Siebert F; Mäntele W; Gerwert K
    Eur J Biochem; 1983 Oct; 136(1):119-27. PubMed ID: 6311543
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Absorbance and circular dichroism spectra of 7-cis photoproduct formed by irradiating frog rhodopsin.
    Azuma K; Azuma M
    Photochem Photobiol; 1985 Feb; 41(2):165-9. PubMed ID: 3873662
    [No Abstract]   [Full Text] [Related]  

  • 37. Conformational changes of cytosolic loops of bovine rhodopsin during the transition to metarhodopsin-II: an investigation by Fourier transform infrared difference spectroscopy.
    Ganter UM; Charitopoulos T; Virmaux N; Siebert F
    Photochem Photobiol; 1992 Jul; 56(1):57-62. PubMed ID: 1508983
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The nature of the primary photochemical events in rhodopsin and isorhodopsin.
    Birge RR; Einterz CM; Knapp HM; Murray LP
    Biophys J; 1988 Mar; 53(3):367-85. PubMed ID: 2964878
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Fourier transform infrared studies of active-site-methylated rhodopsin. Implications for chromophore-protein interaction, transducin activation, and the reaction pathway.
    Ganter UM; Longstaff C; Pajares MA; Rando RR; Siebert F
    Biophys J; 1991 Mar; 59(3):640-4. PubMed ID: 2049524
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [Effect of gamma irradiation on rhodopsin].
    Pushkareva TV; Shmelev GE; Sverdlov AG
    Radiobiologiia; 1977; 17(6):903-6. PubMed ID: 601200
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.