BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 32316893)

  • 1. Specific T-cell immune responses against colony-forming cells including leukemic progenitor cells of AML patients were increased by immune checkpoint inhibition.
    Greiner J; Götz M; Hofmann S; Schrezenmeier H; Wiesneth M; Bullinger L; Döhner H; Schneider V
    Cancer Immunol Immunother; 2020 Apr; 69(4):629-640. PubMed ID: 32020256
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The opportunities and challenges of using PD-1/PD-L1 inhibitors for leukemia treatment.
    Xu M; Li S
    Cancer Lett; 2024 Jul; 593():216969. PubMed ID: 38768681
    [TBL] [Abstract][Full Text] [Related]  

  • 3. New advances in the treatment of chondrosarcoma under the PD-1/PD-L1 pathway.
    Yin J; Ren P
    J Cancer Res Ther; 2024 Apr; 20(2):522-530. PubMed ID: 38687921
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Increased PD-1 expression of bone marrow T-cells in acute myeloid leukaemia patients after stem cell transplantation, and its association with overall survival.
    You E; Park CJ; Cho YU; Jang S; Lee MY; Kim H; Koh KN; Im HJ; Choi EJ; Lee JH; Lee KH
    Ann Clin Biochem; 2024 Mar; 61(2):79-89. PubMed ID: 37314798
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Increased co-expression of ICOS and PD-1 predicts poor overall survival in patients with acute myeloid leukemia.
    Pan S; Cai Q; Wei Y; Tang H; Zhang Y; Zhou W; Deng T; Mo W; Wang S; Wang C; Chen C
    Immunobiology; 2024 May; 229(3):152804. PubMed ID: 38615511
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Single-Cell CD4 and CD8 T-Cell Secretome Profiling Reveals Temporal and Niche Differences in Acute Myeloid Leukemia Following Immune Checkpoint Blockade Therapy.
    Root JL; Desai PN; Ly C; Wang B; Jelloul FZ; Zhou J; Mackay S; Alfayez M; Matthews J; Pierce S; Reville PK; Daver N; Abbas HA
    Cancer Res Commun; 2024 Mar; 4(3):671-681. PubMed ID: 38391202
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Antiviral Responses in Cancer: Boosting Antitumor Immunity Through Activation of Interferon Pathway in the Tumor Microenvironment.
    Vitiello GAF; Ferreira WAS; Cordeiro de Lima VC; Medina TDS
    Front Immunol; 2021; 12():782852. PubMed ID: 34925363
    [TBL] [Abstract][Full Text] [Related]  

  • 8. PD-1: A critical player and target for immune normalization.
    Liu X; Zhao A; Xiao S; Li H; Li M; Guo W; Han Q
    Immunology; 2024 Jun; 172(2):181-197. PubMed ID: 38269617
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Autophagy degrades immunogenic endogenous retroelements induced by 5-azacytidine in acute myeloid leukemia.
    Noronha N; Durette C; Cahuzac M; E Silva B; Courtois J; Humeau J; Sauvat A; Hardy MP; Vincent K; Laverdure JP; Lanoix J; Baron F; Thibault P; Perreault C; Ehx G
    Leukemia; 2024 May; 38(5):1019-1031. PubMed ID: 38627586
    [TBL] [Abstract][Full Text] [Related]  

  • 10. STING-activating cyclic dinucleotide-manganese nanoparticles evoke robust immunity against acute myeloid leukemia.
    Aikins ME; Sun X; Dobson H; Zhou X; Xu Y; Lei YL; Moon JJ
    J Control Release; 2024 Apr; 368():768-779. PubMed ID: 38492861
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Unraveling the Therapeutic Benefit of Sequenced Chemo-immunotherapy.
    Vignali PDA; Luke JJ
    Clin Cancer Res; 2024 May; 30(9):1705-1707. PubMed ID: 38372597
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Escape from T-cell targeting immunotherapies in acute myeloid leukemia.
    Vadakekolathu J; Rutella S
    Blood; 2023 Jul; ():. PubMed ID: 37467496
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cyclic adenosine monophosphate potentiates immune checkpoint blockade therapy in acute myeloid leukemia.
    Mao P; Feng W; Zhang Z; Huang C; Zhou S; Zhao Z; Mu Y; Zhao AY; Wang L; Li F; Zhao AZ
    Clin Transl Med; 2023 Nov; 13(11):e1489. PubMed ID: 37997561
    [No Abstract]   [Full Text] [Related]  

  • 14. PD-L1 Is Expressed and Promotes the Expansion of Regulatory T Cells in Acute Myeloid Leukemia.
    Dong Y; Han Y; Huang Y; Jiang S; Huang Z; Chen R; Yu Z; Yu K; Zhang S
    Front Immunol; 2020; 11():1710. PubMed ID: 32849603
    [TBL] [Abstract][Full Text] [Related]  

  • 15. NET-related gene signature for predicting AML prognosis.
    Wang J; Wang H; Ding Y; Jiao X; Zhu J; Zhai Z
    Sci Rep; 2024 Apr; 14(1):9115. PubMed ID: 38643300
    [TBL] [Abstract][Full Text] [Related]  

  • 16. C-5401331 identified as a novel T-cell immunoglobulin and mucin domain-containing protein 3 (Tim-3) inhibitor to control acute myeloid leukemia (AML) cell proliferation.
    Al Shahrani M; Gahtani RM; Makkawi M
    Med Oncol; 2024 Jan; 41(3):63. PubMed ID: 38265498
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A potential area of use for immune checkpoint inhibitors: Targeting bone marrow microenvironment in acute myeloid leukemia.
    Aru B; Pehlivanoğlu C; Dal Z; Dereli-Çalışkan NN; Gürlü E; Yanıkkaya-Demirel G
    Front Immunol; 2023; 14():1108200. PubMed ID: 36742324
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Immune Checkpoint Inhibitors in AML-A New Frontier.
    Thummalapalli R; Knaus HA; Gojo I; Zeidner JF
    Curr Cancer Drug Targets; 2020; 20(7):545-557. PubMed ID: 32316893
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The emerging role of immune checkpoint based approaches in AML and MDS.
    Boddu P; Kantarjian H; Garcia-Manero G; Allison J; Sharma P; Daver N
    Leuk Lymphoma; 2018 Apr; 59(4):790-802. PubMed ID: 28679300
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.