BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 32317647)

  • 1. Influence of micropatterned substrates on keratocyte phenotype.
    Bhattacharjee P; Cavanagh BL; Ahearne M
    Sci Rep; 2020 Apr; 10(1):6679. PubMed ID: 32317647
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Corneal keratocyte transition to mesenchymal stem cell phenotype and reversal using serum-free medium supplemented with fibroblast growth factor-2, transforming growth factor-β3 and retinoic acid.
    Sidney LE; Hopkinson A
    J Tissue Eng Regen Med; 2018 Jan; 12(1):e203-e215. PubMed ID: 27685949
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of growth factor supplementation on corneal stromal cell phenotype in vitro using a serum-free media.
    Lynch AP; O'Sullivan F; Ahearne M
    Exp Eye Res; 2016 Oct; 151():26-37. PubMed ID: 27456135
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of substrate topography on the regulation of human corneal stromal cells.
    Bhattacharjee P; Cavanagh BL; Ahearne M
    Colloids Surf B Biointerfaces; 2020 Jun; 190():110971. PubMed ID: 32197207
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Relationships between surface roughness/stiffness of chitosan coatings and fabrication of corneal keratocyte spheroids: Effect of degree of deacetylation.
    Chou SF; Lai JY; Cho CH; Lee CH
    Colloids Surf B Biointerfaces; 2016 Jun; 142():105-113. PubMed ID: 26945162
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effects of retinoic acid on human corneal stromal keratocytes cultured in vitro under serum-free conditions.
    Gouveia RM; Connon CJ
    Invest Ophthalmol Vis Sci; 2013 Nov; 54(12):7483-91. PubMed ID: 24150763
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Low-glucose enhances keratocyte-characteristic phenotype from corneal stromal cells in serum-free conditions.
    Foster JW; Gouveia RM; Connon CJ
    Sci Rep; 2015 Jun; 5():10839. PubMed ID: 26039975
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differentiation of human embryonic stem cells into cells with corneal keratocyte phenotype.
    Chan AA; Hertsenberg AJ; Funderburgh ML; Mann MM; Du Y; Davoli KA; Mich-Basso JD; Yang L; Funderburgh JL
    PLoS One; 2013; 8(2):e56831. PubMed ID: 23437251
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of substrate microtopography on focal adhesion maturation and actin organization via the RhoA/ROCK pathway.
    Seo CH; Furukawa K; Montagne K; Jeong H; Ushida T
    Biomaterials; 2011 Dec; 32(36):9568-75. PubMed ID: 21925729
    [TBL] [Abstract][Full Text] [Related]  

  • 10. MMP regulation of corneal keratocyte motility and mechanics in 3-D collagen matrices.
    Zhou C; Petroll WM
    Exp Eye Res; 2014 Apr; 121():147-60. PubMed ID: 24530619
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A high-throughput microfluidic method for fabricating aligned collagen fibrils to study Keratocyte behavior.
    Lam KH; Kivanany PB; Grose K; Yonet-Tanyeri N; Alsmadi N; Varner VD; Petroll WM; Schmidtke DW
    Biomed Microdevices; 2019 Nov; 21(4):99. PubMed ID: 31741114
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Growth factor regulation of corneal keratocyte mechanical phenotypes in 3-D collagen matrices.
    Lakshman N; Petroll WM
    Invest Ophthalmol Vis Sci; 2012 Mar; 53(3):1077-86. PubMed ID: 22247479
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Keratocyte mechanobiology.
    Petroll WM; Varner VD; Schmidtke DW
    Exp Eye Res; 2020 Nov; 200():108228. PubMed ID: 32919993
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synergistic regulation of cell function by matrix rigidity and adhesive pattern.
    Weng S; Fu J
    Biomaterials; 2011 Dec; 32(36):9584-93. PubMed ID: 21955687
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Responses of human keratocytes to micro- and nanostructured substrates.
    Teixeira AI; Nealey PF; Murphy CJ
    J Biomed Mater Res A; 2004 Dec; 71(3):369-76. PubMed ID: 15470741
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cell behavior on surface modified polydimethylsiloxane (PDMS).
    Stanton MM; Rankenberg JM; Park BW; McGimpsey WG; Malcuit C; Lambert CR
    Macromol Biosci; 2014 Jul; 14(7):953-64. PubMed ID: 24599684
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modulation of keratocyte phenotype by collagen fibril nanoarchitecture in membranes for corneal repair.
    Guo Q; Phillip JM; Majumdar S; Wu PH; Chen J; Calderón-Colón X; Schein O; Smith BJ; Trexler MM; Wirtz D; Elisseeff JH
    Biomaterials; 2013 Dec; 34(37):9365-72. PubMed ID: 24041426
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sphere formation from corneal keratocytes and phenotype specific markers.
    Scott SG; Jun AS; Chakravarti S
    Exp Eye Res; 2011 Dec; 93(6):898-905. PubMed ID: 22032988
    [TBL] [Abstract][Full Text] [Related]  

  • 19. TGF-β3 stimulates stromal matrix assembly by human corneal keratocyte-like cells.
    Karamichos D; Rich CB; Zareian R; Hutcheon AE; Ruberti JW; Trinkaus-Randall V; Zieske JD
    Invest Ophthalmol Vis Sci; 2013 Oct; 54(10):6612-9. PubMed ID: 24022012
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of HDAC Inhibitors on Corneal Keratocyte Mechanical Phenotypes in 3-D Collagen Matrices.
    Koppaka V; Lakshman N; Petroll WM
    Mol Vis; 2015; 21():502-14. PubMed ID: 25999677
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.