These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 32317809)

  • 1. A High-Order Multiscale Approach to Turbulence for Compact Nodal Schemes.
    Navah F; de la Llave Plata M; Couaillier V
    Comput Methods Appl Mech Eng; 2020 May; 363():. PubMed ID: 32317809
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gas-kinetic schemes for direct numerical simulations of compressible homogeneous turbulence.
    Liao W; Peng Y; Luo LS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Oct; 80(4 Pt 2):046702. PubMed ID: 19905477
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Taylor-Green vortex simulation using CABARET scheme in a weakly compressible formulation.
    Kulikov YM; Son EE
    Eur Phys J E Soft Matter; 2018 Mar; 41(3):41. PubMed ID: 29594742
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Estimating the effective Reynolds number in implicit large-eddy simulation.
    Zhou Y; Grinstein FF; Wachtor AJ; Haines BM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jan; 89(1):013303. PubMed ID: 24580356
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Supersonic turbulent flow simulation using a scalable parallel modal discontinuous Galerkin numerical method.
    Houba T; Dasgupta A; Gopalakrishnan S; Gosse R; Roy S
    Sci Rep; 2019 Oct; 9(1):14442. PubMed ID: 31594959
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Unsteady turbulence cascades.
    Goto S; Vassilicos JC
    Phys Rev E; 2016 Nov; 94(5-1):053108. PubMed ID: 27967192
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-order weighted essentially nonoscillatory finite-difference formulation of the lattice Boltzmann method in generalized curvilinear coordinates.
    Hejranfar K; Saadat MH; Taheri S
    Phys Rev E; 2017 Feb; 95(2-1):023314. PubMed ID: 28297984
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Turbulent transport and mixing in transitional Rayleigh-Taylor unstable flow: A priori assessment of gradient-diffusion and similarity modeling.
    Schilling O; Mueschke NJ
    Phys Rev E; 2017 Dec; 96(6-1):063111. PubMed ID: 29347290
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Artificial neural network approach to large-eddy simulation of compressible isotropic turbulence.
    Xie C; Wang J; Li K; Ma C
    Phys Rev E; 2019 May; 99(5-1):053113. PubMed ID: 31212521
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis of errors occurring in large eddy simulation.
    Geurts BJ
    Philos Trans A Math Phys Eng Sci; 2009 Jul; 367(1899):2873-83. PubMed ID: 19531509
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Numerical viscosity and resolution of high-order weighted essentially nonoscillatory schemes for compressible flows with high Reynolds numbers.
    Zhang YT; Shi J; Shu CW; Zhou Y
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Oct; 68(4 Pt 2):046709. PubMed ID: 14683081
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An Extended Eddy-Diffusivity Mass-Flux Scheme for Unified Representation of Subgrid-Scale Turbulence and Convection.
    Tan Z; Kaul CM; Pressel KG; Cohen Y; Schneider T; Teixeira J
    J Adv Model Earth Syst; 2018 Mar; 10(3):770-800. PubMed ID: 29780442
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-Accuracy Positivity-Preserving Finite Difference Approximations of the Chemotaxis Model for Tumor Invasion.
    Zhang L; Peng J; Ge Y; Li H; Tang Y
    J Comput Biol; 2024 Oct; ():. PubMed ID: 39373645
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Large eddy simulation in a rotary blood pump: Viscous shear stress computation and comparison with unsteady Reynolds-averaged Navier-Stokes simulation.
    Torner B; Konnigk L; Hallier S; Kumar J; Witte M; Wurm FH
    Int J Artif Organs; 2018 Nov; 41(11):752-763. PubMed ID: 29898615
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Large eddy simulation using high-resolution and high-order methods.
    Drikakis D; Hahn M; Mosedale A; Thornber B
    Philos Trans A Math Phys Eng Sci; 2009 Jul; 367(1899):2985-97. PubMed ID: 19531517
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prediction of fluid flow and acoustic field of a supersonic jet using vorticity confinement.
    Sadri M; Hejranfar K; Ebrahimi M
    J Acoust Soc Am; 2018 Sep; 144(3):1521. PubMed ID: 30424640
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cascade of circulations in fluid turbulence.
    Eyink GL
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Dec; 74(6 Pt 2):066302. PubMed ID: 17280143
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neural networks for large eddy simulations of wall-bounded turbulence: numerical experiments and challenges.
    Benjamin M; Domino SP; Iaccarino G
    Eur Phys J E Soft Matter; 2023 Jul; 46(7):55. PubMed ID: 37458832
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Numerical simulation of turbulence transition and sound radiation for flow through a rigid glottal model.
    Suh J; Frankel SH
    J Acoust Soc Am; 2007 Jun; 121(6):3728-39. PubMed ID: 17552723
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Refined subgrid-scale model for large-eddy simulation of helical turbulence.
    Yu C; Xiao Z
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jan; 87(1):013006. PubMed ID: 23410425
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.