BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

474 related articles for article (PubMed ID: 32318116)

  • 1. Strategies for the production of biochemicals in bioenergy crops.
    Lin CY; Eudes A
    Biotechnol Biofuels; 2020; 13():71. PubMed ID: 32318116
    [TBL] [Abstract][Full Text] [Related]  

  • 2. PHA bioplastics, biochemicals, and energy from crops.
    Somleva MN; Peoples OP; Snell KD
    Plant Biotechnol J; 2013 Feb; 11(2):233-52. PubMed ID: 23294864
    [TBL] [Abstract][Full Text] [Related]  

  • 3. From flavors and pharmaceuticals to advanced biofuels: production of isoprenoids in Saccharomyces cerevisiae.
    Tippmann S; Chen Y; Siewers V; Nielsen J
    Biotechnol J; 2013 Dec; 8(12):1435-44. PubMed ID: 24227704
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Defining and engineering bioenergy plant feedstock ideotypes.
    Markel K; Belcher MS; Shih PM
    Curr Opin Biotechnol; 2020 Apr; 62():196-201. PubMed ID: 31841969
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Raw plant-based biorefinery: A new paradigm shift towards biotechnological approach to sustainable manufacturing of HMF.
    Heo JB; Lee YS; Chung CH
    Biotechnol Adv; 2019 Dec; 37(8):107422. PubMed ID: 31398398
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Designing the perfect plant feedstock for biofuel production: using the whole buffalo to diversify fuels and products.
    Joyce BL; Stewart CN
    Biotechnol Adv; 2012; 30(5):1011-22. PubMed ID: 21856404
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Energy crops for biofuel feedstocks: facts and recent patents on genetic manipulation to improve biofuel crops.
    Kumar S
    Recent Pat DNA Gene Seq; 2013 Dec; 7(3):187-94. PubMed ID: 24456235
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bioenergy and Biorefinery: Feedstock, Biotechnological Conversion, and Products.
    Amoah J; Kahar P; Ogino C; Kondo A
    Biotechnol J; 2019 Jun; 14(6):e1800494. PubMed ID: 30969025
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biocommodity Engineering.
    Lynd LR; Wyman CE; Gerngross TU
    Biotechnol Prog; 1999 Oct; 15(5):777-793. PubMed ID: 10514248
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Accumulation of high-value bioproducts
    Yang M; Baral NR; Simmons BA; Mortimer JC; Shih PM; Scown CD
    Proc Natl Acad Sci U S A; 2020 Apr; 117(15):8639-8648. PubMed ID: 32220956
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The path forward for lignocellulose biorefineries: Bottlenecks, solutions, and perspective on commercialization.
    Chandel AK; Garlapati VK; Singh AK; Antunes FAF; da Silva SS
    Bioresour Technol; 2018 Sep; 264():370-381. PubMed ID: 29960825
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Engineering Ligninolytic Consortium for Bioconversion of Lignocelluloses to Ethanol and Chemicals.
    Bilal M; Nawaz MZ; Iqbal HMN; Hou J; Mahboob S; Al-Ghanim KA; Cheng H
    Protein Pept Lett; 2018; 25(2):108-119. PubMed ID: 29359652
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metabolic engineering for isoprenoid-based biofuel production.
    Gupta P; Phulara SC
    J Appl Microbiol; 2015 Sep; 119(3):605-19. PubMed ID: 26095690
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genetic manipulation of lignocellulosic biomass for bioenergy.
    Wang P; Dudareva N; Morgan JA; Chapple C
    Curr Opin Chem Biol; 2015 Dec; 29():32-9. PubMed ID: 26342806
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Facing the challenge of sustainable bioenergy production: Could halophytes be part of the solution?
    Debez A; Belghith I; Friesen J; Montzka C; Elleuche S
    J Biol Eng; 2017; 11():27. PubMed ID: 28883890
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recent advances of metabolic engineering strategies in natural isoprenoid production using cell factories.
    Li M; Hou F; Wu T; Jiang X; Li F; Liu H; Xian M; Zhang H
    Nat Prod Rep; 2020 Jan; 37(1):80-99. PubMed ID: 31073570
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enzymes,
    Intasian P; Prakinee K; Phintha A; Trisrivirat D; Weeranoppanant N; Wongnate T; Chaiyen P
    Chem Rev; 2021 Sep; 121(17):10367-10451. PubMed ID: 34228428
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A review on moringa tree and vetiver grass - Potential biorefinery feedstocks.
    Raman JK; Alves CM; Gnansounou E
    Bioresour Technol; 2018 Feb; 249():1044-1051. PubMed ID: 29146310
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Engineering of Bioenergy Crops: Dominant Genetic Approaches to Improve Polysaccharide Properties and Composition in Biomass.
    Brandon AG; Scheller HV
    Front Plant Sci; 2020; 11():282. PubMed ID: 32218797
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Safety and nutritional assessment of GM plants and derived food and feed: the role of animal feeding trials.
    EFSA GMO Panel Working Group on Animal Feeding Trials
    Food Chem Toxicol; 2008 Mar; 46 Suppl 1():S2-70. PubMed ID: 18328408
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.