These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
135 related articles for article (PubMed ID: 32318548)
41. Reaction kinetics of waste sulfuric acid using H Wang J; Hong B; Tong X; Qiu S J Air Waste Manag Assoc; 2016 Dec; 66(12):1268-1275. PubMed ID: 27594423 [TBL] [Abstract][Full Text] [Related]
42. Isothermal Cyclic Conversion of Methane into Methanol over Copper-Exchanged Zeolite at Low Temperature. Tomkins P; Mansouri A; Bozbag SE; Krumeich F; Park MB; Alayon EM; Ranocchiari M; van Bokhoven JA Angew Chem Int Ed Engl; 2016 Apr; 55(18):5467-71. PubMed ID: 27010863 [TBL] [Abstract][Full Text] [Related]
43. Perovskite-supported palladium for methane oxidation - structure-activity relationships. Eyssler A; Lu Y; Matam SK; Weidenkaff A; Ferri D Chimia (Aarau); 2012; 66(9):675-80. PubMed ID: 23211725 [TBL] [Abstract][Full Text] [Related]
44. Bimetallic Pt-Au nanocatalysts electrochemically deposited on graphene and their electrocatalytic characteristics towards oxygen reduction and methanol oxidation. Hu Y; Zhang H; Wu P; Zhang H; Zhou B; Cai C Phys Chem Chem Phys; 2011 Mar; 13(9):4083-94. PubMed ID: 21229152 [TBL] [Abstract][Full Text] [Related]
45. Role of catalytic nitrile decomposition in tricopper complex mediated direct partial oxidation of methane to methanol. Moharreri E; Jafari T; Rathnayake D; Khanna H; Kuo CH; Suib SL; Nandi P Sci Rep; 2021 Sep; 11(1):19175. PubMed ID: 34584179 [TBL] [Abstract][Full Text] [Related]
46. Plasmonic-enhanced catalytic activity of methanol oxidation on Au-graphene-Cu nanosandwiches. Liu Y; Chen F; Wang Q; Wang J; Wang J; Guo L; Gebremariam TT Nanoscale; 2019 May; 11(18):8812-8824. PubMed ID: 31011725 [TBL] [Abstract][Full Text] [Related]
47. Theoretical Overview of Methane Hydroxylation by Copper-Oxygen Species in Enzymatic and Zeolitic Catalysts. Mahyuddin MH; Shiota Y; Staykov A; Yoshizawa K Acc Chem Res; 2018 Oct; 51(10):2382-2390. PubMed ID: 30207444 [TBL] [Abstract][Full Text] [Related]
48. Solution Catalytic Cycle of Incompatible Steps for Ambient Air Oxidation of Methane to Methanol. Natinsky BS; Lu S; Copeland ED; Quintana JC; Liu C ACS Cent Sci; 2019 Sep; 5(9):1584-1590. PubMed ID: 31572785 [TBL] [Abstract][Full Text] [Related]
49. Conversion of methane to methanol: nickel, palladium, and platinum (d9) cations as catalysts for the oxidation of methane by ozone at room temperature. Božović A; Feil S; Koyanagi GK; Viggiano AA; Zhang X; Schlangen M; Schwarz H; Bohme DK Chemistry; 2010 Oct; 16(38):11605-10. PubMed ID: 20827690 [TBL] [Abstract][Full Text] [Related]
50. Platinum catalysts for the high-yield oxidation of methane to a methanol derivative. Periana RA; Taube DJ; Gamble S; Taube H; Satoh T; Fujii H Science; 1998 Apr; 280(5363):560-4. PubMed ID: 9554841 [TBL] [Abstract][Full Text] [Related]
51. Site-specific growth of Au-Pd alloy horns on Au nanorods: a platform for highly sensitive monitoring of catalytic reactions by surface enhancement Raman spectroscopy. Huang J; Zhu Y; Lin M; Wang Q; Zhao L; Yang Y; Yao KX; Han Y J Am Chem Soc; 2013 Jun; 135(23):8552-61. PubMed ID: 23675958 [TBL] [Abstract][Full Text] [Related]
52. Esterification Product Protection Strategies for Direct and Selective Methane Conversion. Blankenship AN; Ravi M; van Bokhoven JA Chimia (Aarau); 2021 Apr; 75(4):305-310. PubMed ID: 33902800 [TBL] [Abstract][Full Text] [Related]
53. Bioinspired Metal-Organic Framework Catalysts for Selective Methane Oxidation to Methanol. Baek J; Rungtaweevoranit B; Pei X; Park M; Fakra SC; Liu YS; Matheu R; Alshmimri SA; Alshehri S; Trickett CA; Somorjai GA; Yaghi OM J Am Chem Soc; 2018 Dec; 140(51):18208-18216. PubMed ID: 30525562 [TBL] [Abstract][Full Text] [Related]
54. Direct Conversion of Methane to Methanol under Mild Conditions over Cu-Zeolites and beyond. Tomkins P; Ranocchiari M; van Bokhoven JA Acc Chem Res; 2017 Feb; 50(2):418-425. PubMed ID: 28151649 [TBL] [Abstract][Full Text] [Related]
55. Low-Temperature Transformation of Methane to Methanol on Pd Huang W; Zhang S; Tang Y; Li Y; Nguyen L; Li Y; Shan J; Xiao D; Gagne R; Frenkel AI; Tao FF Angew Chem Int Ed Engl; 2016 Oct; 55(43):13441-13445. PubMed ID: 27717086 [TBL] [Abstract][Full Text] [Related]
56. Understanding the effect of ultrathin AuPd alloy shells of irregularly shaped Au@AuPd nanoparticles with high-index facets on enhanced performance of ethanol oxidation. Bi C; Feng C; Miao T; Song Y; Wang D; Xia H Nanoscale; 2015 Dec; 7(47):20105-16. PubMed ID: 26567631 [TBL] [Abstract][Full Text] [Related]
57. Insight into the structure of supported palladium catalysts during the total oxidation of methane. Grunwaldt JD; van Vegten N; Baiker A Chem Commun (Camb); 2007 Nov; (44):4635-7. PubMed ID: 17989816 [TBL] [Abstract][Full Text] [Related]
58. Methane Utilization to Methanol by a Hybrid Zeolite@Metal-Organic Framework. Imyen T; Znoutine E; Suttipat D; Iadrat P; Kidkhunthod P; Bureekaew S; Wattanakit C ACS Appl Mater Interfaces; 2020 May; 12(21):23812-23821. PubMed ID: 32368887 [TBL] [Abstract][Full Text] [Related]
59. Electrochemiluminescence cytosensing platform based on Ru(bpy) Jian Y; Wang H; Sun X; Zhang L; Cui K; Ge S; Yu J Talanta; 2019 Jul; 199():485-490. PubMed ID: 30952288 [TBL] [Abstract][Full Text] [Related]
60. The roles of Brønsted acidity in low-temperature catalytic oxidation of NO over acidic zeolites with H Cui R; Ma S; Yang B; Li S; Li J; Pei T; Wang J; Sun S; Mi C Chemosphere; 2020 Jul; 251():126561. PubMed ID: 32443240 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]