BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

320 related articles for article (PubMed ID: 32318553)

  • 1. Beyond Intracellular Accumulation of Polyhydroxyalkanoates: Chiral Hydroxyalkanoic Acids and Polymer Secretion.
    Yañez L; Conejeros R; Vergara-Fernández A; Scott F
    Front Bioeng Biotechnol; 2020; 8():248. PubMed ID: 32318553
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microbial Polyhydroxyalkanoates and Nonnatural Polyesters.
    Choi SY; Cho IJ; Lee Y; Kim YJ; Kim KJ; Lee SY
    Adv Mater; 2020 Sep; 32(35):e1907138. PubMed ID: 32249983
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bacterial polyhydroxyalkanoates.
    Lee SY
    Biotechnol Bioeng; 1996 Jan; 49(1):1-14. PubMed ID: 18623547
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis Gas (Syngas)-Derived Medium-Chain-Length Polyhydroxyalkanoate Synthesis in Engineered Rhodospirillum rubrum.
    Heinrich D; Raberg M; Fricke P; Kenny ST; Morales-Gamez L; Babu RP; O'Connor KE; Steinbüchel A
    Appl Environ Microbiol; 2016 Oct; 82(20):6132-6140. PubMed ID: 27520812
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Future of microbial polyesters.
    Lee GN; Na J
    Microb Cell Fact; 2013 May; 12():54. PubMed ID: 23714196
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Advanced bacterial polyhydroxyalkanoates: towards a versatile and sustainable platform for unnatural tailor-made polyesters.
    Park SJ; Kim TW; Kim MK; Lee SY; Lim SC
    Biotechnol Adv; 2012; 30(6):1196-206. PubMed ID: 22137963
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Engineering Native and Synthetic Pathways in Pseudomonas putida for the Production of Tailored Polyhydroxyalkanoates.
    Mezzina MP; Manoli MT; Prieto MA; Nikel PI
    Biotechnol J; 2021 Mar; 16(3):e2000165. PubMed ID: 33085217
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metabolic engineering for the synthesis of polyesters: A 100-year journey from polyhydroxyalkanoates to non-natural microbial polyesters.
    Choi SY; Rhie MN; Kim HT; Joo JC; Cho IJ; Son J; Jo SY; Sohn YJ; Baritugo KA; Pyo J; Lee Y; Lee SY; Park SJ
    Metab Eng; 2020 Mar; 58():47-81. PubMed ID: 31145993
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bacterial production of the biodegradable plastics polyhydroxyalkanoates.
    Urtuvia V; Villegas P; González M; Seeger M
    Int J Biol Macromol; 2014 Sep; 70():208-13. PubMed ID: 24974981
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Modification of Regulatory Circuits Involved in the Control of Polyhydroxyalkanoates Metabolism to Improve Their Production.
    Velázquez-Sánchez C; Espín G; Peña C; Segura D
    Front Bioeng Biotechnol; 2020; 8():386. PubMed ID: 32426348
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recent strategies for efficient production of polyhydroxyalkanoates by micro-organisms.
    Liu CC; Zhang LL; An J; Chen B; Yang H
    Lett Appl Microbiol; 2016 Jan; 62(1):9-15. PubMed ID: 26482840
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chiral compounds from bacterial polyesters: sugars to plastics to fine chemicals.
    Lee SY; Lee Y; Wang F
    Biotechnol Bioeng; 1999 Nov; 65(3):363-8. PubMed ID: 10486136
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The turnover of medium-chain-length polyhydroxyalkanoates in Pseudomonas putida KT2442 and the fundamental role of PhaZ depolymerase for the metabolic balance.
    de Eugenio LI; Escapa IF; Morales V; Dinjaski N; Galán B; García JL; Prieto MA
    Environ Microbiol; 2010 Jan; 12(1):207-21. PubMed ID: 19788655
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tailored biosynthesis of polyhydroxyalkanoates in chemostat cultures.
    Amstutz V; Hanik N; Pott J; Utsunomia C; Zinn M
    Methods Enzymol; 2019; 627():99-123. PubMed ID: 31630749
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biomedical applications of microbially engineered polyhydroxyalkanoates: an insight into recent advances, bottlenecks, and solutions.
    Singh AK; Srivastava JK; Chandel AK; Sharma L; Mallick N; Singh SP
    Appl Microbiol Biotechnol; 2019 Mar; 103(5):2007-2032. PubMed ID: 30645689
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rational engineering of natural polyhydroxyalkanoates producing microorganisms for improved synthesis and recovery.
    Borrero-de Acuña JM; Poblete-Castro I
    Microb Biotechnol; 2023 Feb; 16(2):262-285. PubMed ID: 35792877
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Polyhydroxyalkanoates from extremophiles: A review.
    Obulisamy PK; Mehariya S
    Bioresour Technol; 2021 Apr; 325():124653. PubMed ID: 33465644
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Systems Metabolic Engineering Strategies for Non-Natural Microbial Polyester Production.
    Lee Y; Cho IJ; Choi SY; Lee SY
    Biotechnol J; 2019 Sep; 14(9):e1800426. PubMed ID: 30851138
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biosynthesis and Characteristics of Aromatic Polyhydroxyalkanoates.
    Ishii-Hyakutake M; Mizuno S; Tsuge T
    Polymers (Basel); 2018 Nov; 10(11):. PubMed ID: 30961192
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A 2D-DIGE-based proteomic analysis brings new insights into cellular responses of Pseudomonas putida KT2440 during polyhydroxyalkanoates synthesis.
    Możejko-Ciesielska J; Mostek A
    Microb Cell Fact; 2019 May; 18(1):93. PubMed ID: 31138236
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.