These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

257 related articles for article (PubMed ID: 32318768)

  • 1. Enzymatic degradation of algal 1,3-xylan: from synergism of lytic polysaccharide monooxygenases with β-1,3-xylanases to their intelligent immobilization on biomimetic silica nanoparticles.
    Cai L; Liu X; Qiu Y; Liu M; Zhang G
    Appl Microbiol Biotechnol; 2020 Jun; 104(12):5347-5360. PubMed ID: 32318768
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The synergism of lytic polysaccharide monooxygenases with lichenase and their co-immobilization on silica nanospheres for green conversion of lichen biomass.
    Cai L; Zheng Y; Chu Y; Lin Y; Liu L; Zhang G
    Front Nutr; 2022; 9():970540. PubMed ID: 36337671
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantifying Oxidation of Cellulose-Associated Glucuronoxylan by Two Lytic Polysaccharide Monooxygenases from Neurospora crassa.
    Hegnar OA; Østby H; Petrović DM; Olsson L; Várnai A; Eijsink VGH
    Appl Environ Microbiol; 2021 Nov; 87(24):e0165221. PubMed ID: 34613755
    [TBL] [Abstract][Full Text] [Related]  

  • 4. LPMOs in cellulase mixtures affect fermentation strategies for lactic acid production from lignocellulosic biomass.
    Müller G; Kalyani DC; Horn SJ
    Biotechnol Bioeng; 2017 Mar; 114(3):552-559. PubMed ID: 27596285
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A novel all-in-one strategy for purification and immobilization of β-1,3-xylanase directly from cell lysate as active and recyclable nanobiocatalyst.
    Cai L; Chu Y; Liu X; Qiu Y; Ge Z; Zhang G
    Microb Cell Fact; 2021 Feb; 20(1):37. PubMed ID: 33549102
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Immobilization of β-1,3-xylanase on pitch-based hyper-crosslinked polymers loaded with Ni
    Liu T; Pei B; Lin J; Zhang G
    Enzyme Microb Technol; 2020 Dec; 142():109674. PubMed ID: 33220862
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An efficient nano-biocatalyst for lignocellulosic biomass hydrolysis: Xylanase immobilization on organically modified biogenic mesoporous silica nanoparticles.
    Ariaeenejad S; Jokar F; Hadian P; Ma'mani L; Gharaghani S; Fereidoonnezhad M; Salekdeh GH
    Int J Biol Macromol; 2020 Dec; 164():3462-3473. PubMed ID: 32888986
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A mini review of xylanolytic enzymes with regards to their synergistic interactions during hetero-xylan degradation.
    Malgas S; Mafa MS; Mkabayi L; Pletschke BI
    World J Microbiol Biotechnol; 2019 Nov; 35(12):187. PubMed ID: 31728656
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synergistic Action of a Lytic Polysaccharide Monooxygenase and a Cellobiohydrolase from
    Ogunyewo OA; Randhawa A; Gupta M; Kaladhar VC; Verma PK; Yazdani SS
    Appl Environ Microbiol; 2020 Nov; 86(23):. PubMed ID: 32978122
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Specific Xylan Activity Revealed for AA9 Lytic Polysaccharide Monooxygenases of the Thermophilic Fungus
    Hüttner S; Várnai A; Petrović DM; Bach CX; Kim Anh DT; Thanh VN; Eijsink VGH; Larsbrink J; Olsson L
    Appl Environ Microbiol; 2019 Dec; 85(23):. PubMed ID: 31540984
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of an oligosaccharide reducing-end xylanase, BhRex8A, on the synergistic degradation of xylan backbones by an optimised xylanolytic enzyme cocktail.
    Malgas S; Pletschke BI
    Enzyme Microb Technol; 2019 Mar; 122():74-81. PubMed ID: 30638511
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An innovative approach of priming lignocellulosics with lytic polysaccharide mono-oxygenases prior to saccharification with glycosyl hydrolases can economize second generation ethanol process.
    Agrawal D; Kaur B; Kaur Brar K; Chadha BS
    Bioresour Technol; 2020 Jul; 308():123257. PubMed ID: 32244131
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multiple thermostable enzyme hydrolases on magnetic nanoparticles: An immobilized enzyme-mediated approach to saccharification through simultaneous xylanase, cellulase and amylolytic glucanotransferase action.
    Kumari A; Kaila P; Tiwari P; Singh V; Kaul S; Singhal N; Guptasarma P
    Int J Biol Macromol; 2018 Dec; 120(Pt B):1650-1658. PubMed ID: 30253177
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Revisiting the AA14 family of lytic polysaccharide monooxygenases and their catalytic activity.
    Tuveng TR; Østby H; Tamburrini KC; Bissaro B; Hegnar OA; Stepnov AA; Várnai A; Berrin JG; Eijsink VGH
    FEBS Lett; 2023 Aug; 597(16):2086-2102. PubMed ID: 37418595
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Homologous xylanases from Clostridium thermocellum: evidence for bi-functional activity, synergism between xylanase catalytic modules and the presence of xylan-binding domains in enzyme complexes.
    Fernandes AC; Fontes CM; Gilbert HJ; Hazlewood GP; Fernandes TH; Ferreira LM
    Biochem J; 1999 Aug; 342 ( Pt 1)(Pt 1):105-10. PubMed ID: 10432306
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Unraveling Synergism between Various GH Family Xylanases and Debranching Enzymes during Hetero-Xylan Degradation.
    Malgas S; Mafa MS; Mathibe BN; Pletschke BI
    Molecules; 2021 Nov; 26(22):. PubMed ID: 34833862
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lytic Polysaccharide Monooxygenases in Biomass Conversion.
    Hemsworth GR; Johnston EM; Davies GJ; Walton PH
    Trends Biotechnol; 2015 Dec; 33(12):747-761. PubMed ID: 26472212
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synergistic hydrolysis of xylan using novel xylanases, β-xylosidases, and an α-L-arabinofuranosidase from Geobacillus thermodenitrificans NG80-2.
    Huang D; Liu J; Qi Y; Yang K; Xu Y; Feng L
    Appl Microbiol Biotechnol; 2017 Aug; 101(15):6023-6037. PubMed ID: 28616644
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Agar-agar entrapment increases the stability of endo-β-1,4-xylanase for repeated biodegradation of xylan.
    Bibi Z; Shahid F; Ul Qader SA; Aman A
    Int J Biol Macromol; 2015 Apr; 75():121-7. PubMed ID: 25603143
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Two degradation strategies for overcoming the recalcitrance of natural lignocellulosic xylan by polysaccharides-binding GH10 and GH11 xylanases of filamentous fungi.
    Miao Y; Li P; Li G; Liu D; Druzhinina IS; Kubicek CP; Shen Q; Zhang R
    Environ Microbiol; 2017 Mar; 19(3):1054-1064. PubMed ID: 27878934
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.