These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

253 related articles for article (PubMed ID: 32318768)

  • 41. A highly xyloglucan active lytic polysaccharide monooxygenase EpLPMO9A from Eupenicillium parvum 4-14 shows boosting effect on hydrolysis of complex lignocellulosic substrates.
    Shi Y; Chen K; Long L; Ding S
    Int J Biol Macromol; 2021 Jan; 167():202-213. PubMed ID: 33271180
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A Lytic Polysaccharide Monooxygenase with Broad Xyloglucan Specificity from the Brown-Rot Fungus Gloeophyllum trabeum and Its Action on Cellulose-Xyloglucan Complexes.
    Kojima Y; Várnai A; Ishida T; Sunagawa N; Petrovic DM; Igarashi K; Jellison J; Goodell B; Alfredsen G; Westereng B; Eijsink VG; Yoshida M
    Appl Environ Microbiol; 2016 Nov; 82(22):6557-6572. PubMed ID: 27590806
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A family of AA9 lytic polysaccharide monooxygenases in Aspergillus nidulans is differentially regulated by multiple substrates and at least one is active on cellulose and xyloglucan.
    Jagadeeswaran G; Gainey L; Prade R; Mort AJ
    Appl Microbiol Biotechnol; 2016 May; 100(10):4535-47. PubMed ID: 27075737
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Putative endoglucanase PcGH5 from Phanerochaete chrysosporium is a β-xylosidase that cleaves xylans in synergistic action with endo-xylanase.
    Huy ND; Nguyen CL; Seo JW; Kim DH; Park SM
    J Biosci Bioeng; 2015 Apr; 119(4):416-20. PubMed ID: 25300189
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Properties and applications of microbial beta-D-xylosidases featuring the catalytically efficient enzyme from Selenomonas ruminantium.
    Jordan DB; Wagschal K
    Appl Microbiol Biotechnol; 2010 May; 86(6):1647-58. PubMed ID: 20352422
    [TBL] [Abstract][Full Text] [Related]  

  • 46. High-level production of thermotolerant β-xylosidase of Aspergillus sp. BCC125 in Pichia pastoris: characterization and its application in ethanol production.
    Wongwisansri S; Promdonkoy P; Matetaviparee P; Roongsawang N; Eurwilaichitr L; Tanapongpipat S
    Bioresour Technol; 2013 Mar; 132():410-3. PubMed ID: 23265813
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Lytic xylan oxidases from wood-decay fungi unlock biomass degradation.
    Couturier M; Ladevèze S; Sulzenbacher G; Ciano L; Fanuel M; Moreau C; Villares A; Cathala B; Chaspoul F; Frandsen KE; Labourel A; Herpoël-Gimbert I; Grisel S; Haon M; Lenfant N; Rogniaux H; Ropartz D; Davies GJ; Rosso MN; Walton PH; Henrissat B; Berrin JG
    Nat Chem Biol; 2018 Mar; 14(3):306-310. PubMed ID: 29377002
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Efficient Secretory Production of Lytic Polysaccharide Monooxygenase
    Guo X; An Y; Lu F; Liu F; Wang B
    Int J Mol Sci; 2023 Jun; 24(11):. PubMed ID: 37298661
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Recent insights into lytic polysaccharide monooxygenases (LPMOs).
    Tandrup T; Frandsen KEH; Johansen KS; Berrin JG; Lo Leggio L
    Biochem Soc Trans; 2018 Dec; 46(6):1431-1447. PubMed ID: 30381341
    [TBL] [Abstract][Full Text] [Related]  

  • 50. GH30 Glucuronoxylan-Specific Xylanase from Streptomyces turgidiscabies C56.
    Maehara T; Yagi H; Sato T; Ohnishi-Kameyama M; Fujimoto Z; Kamino K; Kitamura Y; St John F; Yaoi K; Kaneko S
    Appl Environ Microbiol; 2018 Feb; 84(4):. PubMed ID: 29180367
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A fast and easy strategy for lytic polysaccharide monooxygenase-cleavable His
    Kadowaki MAS; Magri S; de Godoy MO; Monclaro AV; Zarattini M; Cannella D
    Enzyme Microb Technol; 2021 Feb; 143():109704. PubMed ID: 33375972
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Enhanced lignocellulosic biomass hydrolysis by oxidative lytic polysaccharide monooxygenases (LPMOs) GH61 from Gloeophyllum trabeum.
    Jung S; Song Y; Kim HM; Bae HJ
    Enzyme Microb Technol; 2015 Sep; 77():38-45. PubMed ID: 26138398
    [TBL] [Abstract][Full Text] [Related]  

  • 53. High stabilization and hyperactivation of a Recombinant β-Xylosidase through Immobilization Strategies.
    Corradini FAS; Milessi TS; Gonçalves VM; Ruller R; Sargo CR; Lopes LA; Zangirolami TC; Tardioli PW; Giordano RC; Giordano RLC
    Enzyme Microb Technol; 2021 Apr; 145():109725. PubMed ID: 33750534
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Enzymatic Properties of endo-1,4-β-xylanase from Wheat Malt.
    Peng Z; Jin Y; Du J
    Protein Pept Lett; 2019; 26(5):332-338. PubMed ID: 30816076
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Two xylose-tolerant GH43 bifunctional β-xylosidase/α-arabinosidases and one GH11 xylanase from Humicola insolens and their synergy in the degradation of xylan.
    Yang X; Shi P; Huang H; Luo H; Wang Y; Zhang W; Yao B
    Food Chem; 2014 Apr; 148():381-7. PubMed ID: 24262572
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Immobilization of xylan-degrading enzymes from Melanocarpus albomyces IIS 68 on the smart polymer Eudragit L-100.
    Roy I; Gupta A; Khare SK; Bisaria VS; Gupta MN
    Appl Microbiol Biotechnol; 2003 May; 61(4):309-13. PubMed ID: 12743759
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The effect of a lytic polysaccharide monooxygenase and a xylanase from Gloeophyllum trabeum on the enzymatic hydrolysis of lignocellulosic residues using a commercial cellulase.
    Sanhueza C; Carvajal G; Soto-Aguilar J; Lienqueo ME; Salazar O
    Enzyme Microb Technol; 2018 Jun; 113():75-82. PubMed ID: 29602390
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Xylanase immobilization on magnetite and magnetite core/shell nanocomposites using two different flexible alkyl length organophosphonates: Linker length and shell effect on enzyme catalytic activity.
    Singh V; Kaul S; Singla P; Kumar V; Sandhir R; Chung JH; Garg P; Singhal NK
    Int J Biol Macromol; 2018 Aug; 115():590-599. PubMed ID: 29684449
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Structural and functional characterization of a highly stable endo-β-1,4-xylanase from Fusarium oxysporum and its development as an efficient immobilized biocatalyst.
    Gómez S; Payne AM; Savko M; Fox GC; Shepard WE; Fernandez FJ; Cristina Vega M
    Biotechnol Biofuels; 2016; 9(1):191. PubMed ID: 27602054
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A novel endo-1,4-β-xylanase from Alicyclobacillus mali FL18: Biochemical characterization and its synergistic action with β-xylosidase in hemicellulose deconstruction.
    Salzano F; Aulitto M; Fiorentino G; Cannella D; Peeters E; Limauro D
    Int J Biol Macromol; 2024 Apr; 264(Pt 1):130550. PubMed ID: 38432267
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.