These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
279 related articles for article (PubMed ID: 32319760)
1. Dipeptide Self-assembled Hydrogels with Shear-Thinning and Instantaneous Self-healing Properties Determined by Peptide Sequences. Ren P; Li J; Zhao L; Wang A; Wang M; Li J; Jian H; Li X; Yan X; Bai S ACS Appl Mater Interfaces; 2020 May; 12(19):21433-21440. PubMed ID: 32319760 [TBL] [Abstract][Full Text] [Related]
2. Unusual Two-Step Assembly of a Minimalistic Dipeptide-Based Functional Hypergelator. Chakraborty P; Tang Y; Yamamoto T; Yao Y; Guterman T; Zilberzwige-Tal S; Adadi N; Ji W; Dvir T; Ramamoorthy A; Wei G; Gazit E Adv Mater; 2020 Mar; 32(9):e1906043. PubMed ID: 31984580 [TBL] [Abstract][Full Text] [Related]
3. A Comprehensive Study on Self-Assembly and Gelation of C Hu T; Zhang Z; Hu H; Euston SR; Pan S Biomacromolecules; 2020 Feb; 21(2):670-679. PubMed ID: 31794666 [TBL] [Abstract][Full Text] [Related]
4. Ultrashort Peptides and Hyaluronic Acid-Based Injectable Composite Hydrogels for Sustained Drug Release and Chronic Diabetic Wound Healing. Wang L; Li J; Xiong Y; Wu Y; Yang F; Guo Y; Chen Z; Gao L; Deng W ACS Appl Mater Interfaces; 2021 Dec; 13(49):58329-58339. PubMed ID: 34860513 [TBL] [Abstract][Full Text] [Related]
5. Injectable Magnetic-Responsive Short-Peptide Supramolecular Hydrogels: Ex Vivo and In Vivo Evaluation. Mañas-Torres MC; Gila-Vilchez C; Vazquez-Perez FJ; Kuzhir P; Momier D; Scimeca JC; Borderie A; Goracci M; Burel-Vandenbos F; Blanco-Elices C; Rodriguez IA; Alaminos M; de Cienfuegos LÁ; Lopez-Lopez MT ACS Appl Mater Interfaces; 2021 Oct; 13(42):49692-49704. PubMed ID: 34645258 [TBL] [Abstract][Full Text] [Related]
6. Design of self-assembly dipeptide hydrogels and machine learning via their chemical features. Li F; Han J; Cao T; Lam W; Fan B; Tang W; Chen S; Fok KL; Li L Proc Natl Acad Sci U S A; 2019 Jun; 116(23):11259-11264. PubMed ID: 31110004 [TBL] [Abstract][Full Text] [Related]
8. An Injectable Self-Healing Protein Hydrogel with Multiple Dissipation Modes and Tunable Dynamic Response. Sun W; Duan T; Cao Y; Li H Biomacromolecules; 2019 Nov; 20(11):4199-4207. PubMed ID: 31553595 [TBL] [Abstract][Full Text] [Related]
9. Self-Assembled Injectable Peptide Hydrogels Capable of Triggering Antitumor Immune Response. Xing R; Li S; Zhang N; Shen G; Möhwald H; Yan X Biomacromolecules; 2017 Nov; 18(11):3514-3523. PubMed ID: 28721731 [TBL] [Abstract][Full Text] [Related]
10. Peptide-/Drug-Directed Self-Assembly of Hybrid Polyurethane Hydrogels for Wound Healing. Zhang F; Hu C; Kong Q; Luo R; Wang Y ACS Appl Mater Interfaces; 2019 Oct; 11(40):37147-37155. PubMed ID: 31513742 [TBL] [Abstract][Full Text] [Related]
11. Lactobionic acid-modified chitosan thermosensitive hydrogels that lift lesions and promote repair in endoscopic submucosal dissection. Ni P; Li R; Ye S; Shan J; Yuan T; Liang J; Fan Y; Zhang X Carbohydr Polym; 2021 Jul; 263():118001. PubMed ID: 33858584 [TBL] [Abstract][Full Text] [Related]
12. Dipeptide Self-Assembled Hydrogels with Tunable Mechanical Properties and Degradability for 3D Bioprinting. Jian H; Wang M; Dong Q; Li J; Wang A; Li X; Ren P; Bai S ACS Appl Mater Interfaces; 2019 Dec; 11(50):46419-46426. PubMed ID: 31769283 [TBL] [Abstract][Full Text] [Related]
13. Injectable shear-thinning sodium alginate hydrogels with sustained submucosal lift for endoscopic submucosal dissection. Ma J; Wang P; Tang C; Liao H; Zhang W; Yang R; Shi T; Tan X; Chi B Int J Biol Macromol; 2022 Dec; 223(Pt A):939-949. PubMed ID: 36395937 [TBL] [Abstract][Full Text] [Related]
14. Quadruple hydrogen bonds and thermo-triggered hydrophobic interactions generate dynamic hydrogels to modulate transplanted cell retention. Liu S; Qi D; Chen Y; Teng L; Jia Y; Ren L Biomater Sci; 2019 Mar; 7(4):1286-1298. PubMed ID: 30865196 [TBL] [Abstract][Full Text] [Related]
15. Synthesis and characterization of designed BMHP1-derived self-assembling peptides for tissue engineering applications. Silva D; Natalello A; Sanii B; Vasita R; Saracino G; Zuckermann RN; Doglia SM; Gelain F Nanoscale; 2013 Jan; 5(2):704-18. PubMed ID: 23223865 [TBL] [Abstract][Full Text] [Related]
16. Effect of heterocyclic capping groups on the self-assembly of a dipeptide hydrogel. Martin AD; Wojciechowski JP; Warren H; in het Panhuis M; Thordarson P Soft Matter; 2016 Mar; 12(10):2700-7. PubMed ID: 26860207 [TBL] [Abstract][Full Text] [Related]
18. Injectable hydrogels from segmented PEG-bisurea copolymers. Pawar GM; Koenigs M; Fahimi Z; Cox M; Voets IK; Wyss HM; Sijbesma RP Biomacromolecules; 2012 Dec; 13(12):3966-76. PubMed ID: 23151204 [TBL] [Abstract][Full Text] [Related]
19. Injectable and fast self-healing protein hydrogels. Zhang X; Jiang S; Yan T; Fan X; Li F; Yang X; Ren B; Xu J; Liu J Soft Matter; 2019 Oct; 15(38):7583-7589. PubMed ID: 31465079 [TBL] [Abstract][Full Text] [Related]
20. De novo design of self-assembly hydrogels based on Fmoc-diphenylalanine providing drug release. Li X; Zhang H; Liu L; Cao C; Wei P; Yi X; Zhou Y; Lv Q; Zhou D; Yi T J Mater Chem B; 2021 Oct; 9(41):8686-8693. PubMed ID: 34617098 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]