Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

274 related articles for article (PubMed ID: 32319760)

  • 1. Dipeptide Self-assembled Hydrogels with Shear-Thinning and Instantaneous Self-healing Properties Determined by Peptide Sequences.
    Ren P; Li J; Zhao L; Wang A; Wang M; Li J; Jian H; Li X; Yan X; Bai S
    ACS Appl Mater Interfaces; 2020 May; 12(19):21433-21440. PubMed ID: 32319760
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Unusual Two-Step Assembly of a Minimalistic Dipeptide-Based Functional Hypergelator.
    Chakraborty P; Tang Y; Yamamoto T; Yao Y; Guterman T; Zilberzwige-Tal S; Adadi N; Ji W; Dvir T; Ramamoorthy A; Wei G; Gazit E
    Adv Mater; 2020 Mar; 32(9):e1906043. PubMed ID: 31984580
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Comprehensive Study on Self-Assembly and Gelation of C
    Hu T; Zhang Z; Hu H; Euston SR; Pan S
    Biomacromolecules; 2020 Feb; 21(2):670-679. PubMed ID: 31794666
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultrashort Peptides and Hyaluronic Acid-Based Injectable Composite Hydrogels for Sustained Drug Release and Chronic Diabetic Wound Healing.
    Wang L; Li J; Xiong Y; Wu Y; Yang F; Guo Y; Chen Z; Gao L; Deng W
    ACS Appl Mater Interfaces; 2021 Dec; 13(49):58329-58339. PubMed ID: 34860513
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Injectable Magnetic-Responsive Short-Peptide Supramolecular Hydrogels: Ex Vivo and In Vivo Evaluation.
    Mañas-Torres MC; Gila-Vilchez C; Vazquez-Perez FJ; Kuzhir P; Momier D; Scimeca JC; Borderie A; Goracci M; Burel-Vandenbos F; Blanco-Elices C; Rodriguez IA; Alaminos M; de Cienfuegos LÁ; Lopez-Lopez MT
    ACS Appl Mater Interfaces; 2021 Oct; 13(42):49692-49704. PubMed ID: 34645258
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design of self-assembly dipeptide hydrogels and machine learning via their chemical features.
    Li F; Han J; Cao T; Lam W; Fan B; Tang W; Chen S; Fok KL; Li L
    Proc Natl Acad Sci U S A; 2019 Jun; 116(23):11259-11264. PubMed ID: 31110004
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stimuli-Responsive, Pentapeptide, Nanofiber Hydrogel for Tissue Engineering.
    Tang JD; Mura C; Lampe KJ
    J Am Chem Soc; 2019 Mar; 141(12):4886-4899. PubMed ID: 30830776
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An Injectable Self-Healing Protein Hydrogel with Multiple Dissipation Modes and Tunable Dynamic Response.
    Sun W; Duan T; Cao Y; Li H
    Biomacromolecules; 2019 Nov; 20(11):4199-4207. PubMed ID: 31553595
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Self-Assembled Injectable Peptide Hydrogels Capable of Triggering Antitumor Immune Response.
    Xing R; Li S; Zhang N; Shen G; Möhwald H; Yan X
    Biomacromolecules; 2017 Nov; 18(11):3514-3523. PubMed ID: 28721731
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Peptide-/Drug-Directed Self-Assembly of Hybrid Polyurethane Hydrogels for Wound Healing.
    Zhang F; Hu C; Kong Q; Luo R; Wang Y
    ACS Appl Mater Interfaces; 2019 Oct; 11(40):37147-37155. PubMed ID: 31513742
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lactobionic acid-modified chitosan thermosensitive hydrogels that lift lesions and promote repair in endoscopic submucosal dissection.
    Ni P; Li R; Ye S; Shan J; Yuan T; Liang J; Fan Y; Zhang X
    Carbohydr Polym; 2021 Jul; 263():118001. PubMed ID: 33858584
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dipeptide Self-Assembled Hydrogels with Tunable Mechanical Properties and Degradability for 3D Bioprinting.
    Jian H; Wang M; Dong Q; Li J; Wang A; Li X; Ren P; Bai S
    ACS Appl Mater Interfaces; 2019 Dec; 11(50):46419-46426. PubMed ID: 31769283
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Injectable shear-thinning sodium alginate hydrogels with sustained submucosal lift for endoscopic submucosal dissection.
    Ma J; Wang P; Tang C; Liao H; Zhang W; Yang R; Shi T; Tan X; Chi B
    Int J Biol Macromol; 2022 Dec; 223(Pt A):939-949. PubMed ID: 36395937
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quadruple hydrogen bonds and thermo-triggered hydrophobic interactions generate dynamic hydrogels to modulate transplanted cell retention.
    Liu S; Qi D; Chen Y; Teng L; Jia Y; Ren L
    Biomater Sci; 2019 Mar; 7(4):1286-1298. PubMed ID: 30865196
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis and characterization of designed BMHP1-derived self-assembling peptides for tissue engineering applications.
    Silva D; Natalello A; Sanii B; Vasita R; Saracino G; Zuckermann RN; Doglia SM; Gelain F
    Nanoscale; 2013 Jan; 5(2):704-18. PubMed ID: 23223865
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of heterocyclic capping groups on the self-assembly of a dipeptide hydrogel.
    Martin AD; Wojciechowski JP; Warren H; in het Panhuis M; Thordarson P
    Soft Matter; 2016 Mar; 12(10):2700-7. PubMed ID: 26860207
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cyclic Dipeptide-Based Ambidextrous Supergelators: Minimalistic Rational Design, Structure-Gelation Studies, and In Situ Hydrogelation.
    Manchineella S; Murugan NA; Govindaraju T
    Biomacromolecules; 2017 Nov; 18(11):3581-3590. PubMed ID: 28856890
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Injectable hydrogels from segmented PEG-bisurea copolymers.
    Pawar GM; Koenigs M; Fahimi Z; Cox M; Voets IK; Wyss HM; Sijbesma RP
    Biomacromolecules; 2012 Dec; 13(12):3966-76. PubMed ID: 23151204
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Injectable and fast self-healing protein hydrogels.
    Zhang X; Jiang S; Yan T; Fan X; Li F; Yang X; Ren B; Xu J; Liu J
    Soft Matter; 2019 Oct; 15(38):7583-7589. PubMed ID: 31465079
    [TBL] [Abstract][Full Text] [Related]  

  • 20. De novo design of self-assembly hydrogels based on Fmoc-diphenylalanine providing drug release.
    Li X; Zhang H; Liu L; Cao C; Wei P; Yi X; Zhou Y; Lv Q; Zhou D; Yi T
    J Mater Chem B; 2021 Oct; 9(41):8686-8693. PubMed ID: 34617098
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.