These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
196 related articles for article (PubMed ID: 32320011)
1. Bioaccessibility of Nickel and Cobalt Released from Occupationally Relevant Alloy and Metal Powders at Simulated Human Exposure Scenarios. Wang X; Odnevall Wallinder I; Hedberg Y Ann Work Expo Health; 2020 Jul; 64(6):659-675. PubMed ID: 32320011 [TBL] [Abstract][Full Text] [Related]
2. Surface passivity largely governs the bioaccessibility of nickel-based powder particles at human exposure conditions. Hedberg YS; Herting G; Latvala S; Elihn K; Karlsson HL; Odnevall Wallinder I Regul Toxicol Pharmacol; 2016 Nov; 81():162-170. PubMed ID: 27575685 [TBL] [Abstract][Full Text] [Related]
3. Bioaccessibility of nickel and cobalt in powders and massive forms of stainless steel, nickel- or cobalt-based alloys, and nickel and cobalt metals in artificial sweat. Wang X; Herting G; Wei Z; Odnevall Wallinder I; Hedberg Y Regul Toxicol Pharmacol; 2019 Aug; 106():15-26. PubMed ID: 31028796 [TBL] [Abstract][Full Text] [Related]
4. Bioaccessibility studies of ferro-chromium alloy particles for a simulated inhalation scenario: a comparative study with the pure metals and stainless steel. Midander K; de Frutos A; Hedberg Y; Darrie G; Wallinder IO Integr Environ Assess Manag; 2010 Jul; 6(3):441-55. PubMed ID: 20821706 [TBL] [Abstract][Full Text] [Related]
5. Particles, sweat, and tears: a comparative study on bioaccessibility of ferrochromium alloy and stainless steel particles, the pure metals and their metal oxides, in simulated skin and eye contact. Hedberg Y; Midander K; Wallinder IO Integr Environ Assess Manag; 2010 Jul; 6(3):456-68. PubMed ID: 20821707 [TBL] [Abstract][Full Text] [Related]
6. Bioaccessibility of nickel and cobalt in synthetic gastric and lung fluids and its potential use in alloy classification. Heim KE; Danzeisen R; Verougstraete V; Gaidou F; Brouwers T; Oller AR Regul Toxicol Pharmacol; 2020 Feb; 110():104549. PubMed ID: 31811877 [TBL] [Abstract][Full Text] [Related]
7. Toxicity assessment and health hazard classification of stainless steels. Taxell P; Huuskonen P Regul Toxicol Pharmacol; 2022 Aug; 133():105227. PubMed ID: 35817207 [TBL] [Abstract][Full Text] [Related]
8. Assessment of corrosion resistance of cast cobalt- and nickel-chromium dental alloys in acidic environments. Mercieca S; Caligari Conti M; Buhagiar J; Camilleri J J Appl Biomater Funct Mater; 2018 Jan; 16(1):47-54. PubMed ID: 29076515 [TBL] [Abstract][Full Text] [Related]
9. Corrosion behaviour and surface analysis of a Co-Cr and two Ni-Cr dental alloys before and after simulated porcelain firing. Qiu J; Yu WQ; Zhang FQ; Smales RJ; Zhang YL; Lu CH Eur J Oral Sci; 2011 Feb; 119(1):93-101. PubMed ID: 21244518 [TBL] [Abstract][Full Text] [Related]
10. Nickel release and surface characteristics of fine powders of nickel metal and nickel oxide in media of relevance for inhalation and dermal contact. Mazinanian N; Hedberg Y; Odnevall Wallinder I Regul Toxicol Pharmacol; 2013 Feb; 65(1):135-46. PubMed ID: 23142754 [TBL] [Abstract][Full Text] [Related]
11. Metal release rate from AISI 316L stainless steel and pure Fe, Cr and Ni into a synthetic biological medium--a comparison. Herting G; Wallinder IO; Leygraf C J Environ Monit; 2008 Sep; 10(9):1092-8. PubMed ID: 18728903 [TBL] [Abstract][Full Text] [Related]
12. Bioaccessibility, bioavailability and toxicity of commercially relevant iron- and chromium-based particles: in vitro studies with an inhalation perspective. Hedberg Y; Gustafsson J; Karlsson HL; Möller L; Odnevall Wallinder I Part Fibre Toxicol; 2010 Sep; 7():23. PubMed ID: 20815895 [TBL] [Abstract][Full Text] [Related]
13. [Corrosion property and oxide film of dental casting alloys before and after porcelain firing]. Ma Q; Wu FM Zhonghua Kou Qiang Yi Xue Za Zhi; 2011 Mar; 46(3):172-6. PubMed ID: 21575441 [TBL] [Abstract][Full Text] [Related]
14. Corrosion-induced release of the main alloying constituents of manganese-chromium stainless steels in different media. Herting G; Wallinder IO; Leygraf C J Environ Monit; 2008 Sep; 10(9):1084-91. PubMed ID: 18728902 [TBL] [Abstract][Full Text] [Related]
15. Toxicity evaluation of particles formed during 3D-printing: Cytotoxic, genotoxic, and inflammatory response in lung and macrophage models. Vallabani NVS; Alijagic A; Persson A; Odnevall I; Särndahl E; Karlsson HL Toxicology; 2022 Feb; 467():153100. PubMed ID: 35032623 [TBL] [Abstract][Full Text] [Related]
16. Cobalt, nickel and chromium release from dental tools and alloys. Kettelarij JA; Lidén C; Axén E; Julander A Contact Dermatitis; 2014 Jan; 70(1):3-10. PubMed ID: 23844864 [TBL] [Abstract][Full Text] [Related]
17. Bioaccessibility of micron-sized powder particles of molybdenum metal, iron metal, molybdenum oxides and ferromolybdenum--Importance of surface oxides. Mörsdorf A; Odnevall Wallinder I; Hedberg Y Regul Toxicol Pharmacol; 2015 Aug; 72(3):447-57. PubMed ID: 26032492 [TBL] [Abstract][Full Text] [Related]
18. Complexation- and ligand-induced metal release from 316L particles: importance of particle size and crystallographic structure. Hedberg Y; Hedberg J; Liu Y; Wallinder IO Biometals; 2011 Dec; 24(6):1099-114. PubMed ID: 21691833 [TBL] [Abstract][Full Text] [Related]
19. [Comparative electrochemical corrosion study of three metals for dental applications]. Li H; Du H; Gao M; Chen C; Lin Y Hua Xi Kou Qiang Yi Xue Za Zhi; 2011 Oct; 29(5):481-4. PubMed ID: 22165114 [TBL] [Abstract][Full Text] [Related]
20. Corrosion behavior of nickel-containing alloys in artificial sweat. Randin JP J Biomed Mater Res; 1988 Jul; 22(7):649-66. PubMed ID: 3403567 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]