These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 32320213)

  • 1. Lipid Bilayer Interactions of Peptidic Supramolecular Polymers and Their Impact on Membrane Permeability and Stability.
    Pannwitt S; Kaltbeitzel J; Ahlers P; Spitzer D; Hellmann N; Depoix F; Besenius P; Schneider D
    Biochemistry; 2020 May; 59(19):1845-1853. PubMed ID: 32320213
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tuning the pH-Switch of Supramolecular Polymer Carriers for siRNA to Physiologically Relevant pH.
    Ahlers P; Frisch H; Holm R; Spitzer D; Barz M; Besenius P
    Macromol Biosci; 2017 Oct; 17(10):. PubMed ID: 28671760
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Secondary Self-Assembly of Supramolecular Nanotubes into Tubisomes and Their Activity on Cells.
    Brendel JC; Sanchis J; Catrouillet S; Czuba E; Chen MZ; Long BM; Nowell C; Johnston A; Jolliffe KA; Perrier S
    Angew Chem Int Ed Engl; 2018 Dec; 57(51):16678-16682. PubMed ID: 30383920
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comb-like amphiphilic copolymers bearing acetal-functionalized backbones with the ability of acid-triggered hydrophobic-to-hydrophilic transition as effective nanocarriers for intracellular release of curcumin.
    Zhao J; Wang H; Liu J; Deng L; Liu J; Dong A; Zhang J
    Biomacromolecules; 2013 Nov; 14(11):3973-84. PubMed ID: 24107101
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On the design of supramolecular assemblies made of peptides and lipid bilayers.
    Kemayo Koumkoua P; Aisenbrey C; Salnikov E; Rifi O; Bechinger B
    J Pept Sci; 2014 Jul; 20(7):526-36. PubMed ID: 24909405
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interaction of polycationic polymers with supported lipid bilayers and cells: nanoscale hole formation and enhanced membrane permeability.
    Hong S; Leroueil PR; Janus EK; Peters JL; Kober MM; Islam MT; Orr BG; Baker JR; Banaszak Holl MM
    Bioconjug Chem; 2006; 17(3):728-34. PubMed ID: 16704211
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular Recognition Driven Bioinspired Directional Supramolecular Assembly of Amphiphilic (Macro)molecules and Proteins.
    Sikder A; Chakraborty S; Rajdev P; Dey P; Ghosh S
    Acc Chem Res; 2021 Jun; 54(11):2670-2682. PubMed ID: 34014638
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Amphiphilic macromolecules on cell membranes: from protective layers to controlled permeabilization.
    Marie E; Sagan S; Cribier S; Tribet C
    J Membr Biol; 2014 Oct; 247(9-10):861-81. PubMed ID: 24903487
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Switching between Stacked Toroids and Helical Supramolecular Polymers in Aqueous Nanotubules.
    Wang H; Lee M
    Macromol Rapid Commun; 2020 Jun; 41(11):e2000138. PubMed ID: 32307804
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Construction of β-cyclodextrin-based supramolecular hyperbranched polymers self-assemblies using AB
    Bai Y; Liu CP; Xie FY; Ma R; Zhuo LH; Li N; Tian W
    Carbohydr Polym; 2019 Jun; 213():411-418. PubMed ID: 30879686
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Formation and stabilization of pores in bilayer membranes by peptide-like amphiphilic polymers.
    Checkervarty A; Werner M; Sommer JU
    Soft Matter; 2018 Mar; 14(13):2526-2534. PubMed ID: 29537426
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Macromolecular inversion-driven polymer insertion into model lipid bilayer membranes.
    Ramadurai S; Kohut A; Sarangi NK; Zholobko O; Baulin VA; Voronov A; Keyes TE
    J Colloid Interface Sci; 2019 Apr; 542():483-494. PubMed ID: 30772510
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modifying Cell Membranes with Anionic Polymer Amphiphiles Potentiates Intracellular Delivery of Cationic Peptides.
    Dailing EA; Kilchrist KV; Tierney JW; Fletcher RB; Evans BC; Duvall CL
    ACS Appl Mater Interfaces; 2020 Nov; 12(45):50222-50235. PubMed ID: 33124813
    [TBL] [Abstract][Full Text] [Related]  

  • 14. GALA: a designed synthetic pH-responsive amphipathic peptide with applications in drug and gene delivery.
    Li W; Nicol F; Szoka FC
    Adv Drug Deliv Rev; 2004 Apr; 56(7):967-85. PubMed ID: 15066755
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fabrication of supramolecular star-shaped amphiphilic copolymers for ROS-triggered drug release.
    Zuo C; Peng J; Cong Y; Dai X; Zhang X; Zhao S; Zhang X; Ma L; Wang B; Wei H
    J Colloid Interface Sci; 2018 Mar; 514():122-131. PubMed ID: 29248814
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Self-assembly of crystalline nanotubes from monodisperse amphiphilic diblock copolypeptoid tiles.
    Sun J; Jiang X; Lund R; Downing KH; Balsara NP; Zuckermann RN
    Proc Natl Acad Sci U S A; 2016 Apr; 113(15):3954-9. PubMed ID: 27035944
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Supramolecular assembly of functional peptide-polymer conjugates.
    Otter R; Besenius P
    Org Biomol Chem; 2019 Jul; 17(28):6719-6734. PubMed ID: 31241089
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Poly(peptide): Synthesis, Structure, and Function of Peptide-Polymer Amphiphiles and Protein-like Polymers.
    Callmann CE; Thompson MP; Gianneschi NC
    Acc Chem Res; 2020 Feb; 53(2):400-413. PubMed ID: 31967781
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biomimetic design and performance of polymerizable lipids.
    Cashion MP; Long TE
    Acc Chem Res; 2009 Aug; 42(8):1016-25. PubMed ID: 19453103
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Secondary Structure-Driven Hydrogelation Using Foldable Telechelic Polymer-Peptide Conjugates.
    Otter R; Henke NA; Berac C; Bauer T; Barz M; Seiffert S; Besenius P
    Macromol Rapid Commun; 2018 Sep; 39(17):e1800459. PubMed ID: 30040152
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.