These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 32320243)

  • 1. Atomistic Explanation of the Dramatically Improved Oxygen Reduction Reaction of Jagged Platinum Nanowires, 50 Times Better than Pt.
    Chen Y; Cheng T; Goddard WA
    J Am Chem Soc; 2020 May; 142(19):8625-8632. PubMed ID: 32320243
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultrafine jagged platinum nanowires enable ultrahigh mass activity for the oxygen reduction reaction.
    Li M; Zhao Z; Cheng T; Fortunelli A; Chen CY; Yu R; Zhang Q; Gu L; Merinov BV; Lin Z; Zhu E; Yu T; Jia Q; Guo J; Zhang L; Goddard WA; Huang Y; Duan X
    Science; 2016 Dec; 354(6318):1414-1419. PubMed ID: 27856847
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ultra-thin PtFe-nanowires as durable electrocatalysts for fuel cells.
    Zhang Z; Li M; Wu Z; Li W
    Nanotechnology; 2011 Jan; 22(1):015602. PubMed ID: 21135465
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The atomistic origin of the extraordinary oxygen reduction activity of Pt
    Fortunelli A; Goddard WA; Sementa L; Barcaro G; Negreiros FR; Jaramillo-Botero A
    Chem Sci; 2015 Jul; 6(7):3915-3925. PubMed ID: 29218162
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Platinum-based oxygen reduction electrocatalysts.
    Wu J; Yang H
    Acc Chem Res; 2013 Aug; 46(8):1848-57. PubMed ID: 23808919
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dendrite-Embedded Platinum-Nickel Multiframes as Highly Active and Durable Electrocatalyst toward the Oxygen Reduction Reaction.
    Kwon H; Kabiraz MK; Park J; Oh A; Baik H; Choi SI; Lee K
    Nano Lett; 2018 May; 18(5):2930-2936. PubMed ID: 29634282
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neighboring Pt Atom Sites in an Ultrathin FePt Nanosheet for the Efficient and Highly CO-Tolerant Oxygen Reduction Reaction.
    Chen W; Gao W; Tu P; Robert T; Ma Y; Shan H; Gu X; Shang W; Tao P; Song C; Deng T; Zhu H; Pan X; Yang H; Wu J
    Nano Lett; 2018 Sep; 18(9):5905-5912. PubMed ID: 30064214
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermal Properties and Segregation Behavior of Pt Nanowires Modified with Au, Ag, and Pd Atoms: A Classical Molecular Dynamics Study.
    Gambu TG; Terranova U; Santos-Carballal D; Petersen MA; Jones G; van Steen E; de Leeuw NH
    J Phys Chem C Nanomater Interfaces; 2019 Aug; 123(33):20522-20531. PubMed ID: 32064014
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Achieving Remarkable Activity and Durability toward Oxygen Reduction Reaction Based on Ultrathin Rh-Doped Pt Nanowires.
    Huang H; Li K; Chen Z; Luo L; Gu Y; Zhang D; Ma C; Si R; Yang J; Peng Z; Zeng J
    J Am Chem Soc; 2017 Jun; 139(24):8152-8159. PubMed ID: 28539043
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gradient-Concentration Design of Stable Core-Shell Nanostructure for Acidic Oxygen Reduction Electrocatalysis.
    Lyu X; Jia Y; Mao X; Li D; Li G; Zhuang L; Wang X; Yang D; Wang Q; Du A; Yao X
    Adv Mater; 2020 Aug; 32(32):e2003493. PubMed ID: 32596981
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design of Low Pt Concentration Electrocatalyst Surfaces with High Oxygen Reduction Reaction Activity Promoted by Formation of a Heterogeneous Interface between Pt and CeO(x) Nanowire.
    Chauhan S; Mori T; Masuda T; Ueda S; Richards GJ; Hill JP; Ariga K; Isaka N; Auchterlonie G; Drennan J
    ACS Appl Mater Interfaces; 2016 Apr; 8(14):9059-70. PubMed ID: 27008198
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Activity descriptor identification for oxygen reduction on platinum-based bimetallic nanoparticles: in situ observation of the linear composition-strain-activity relationship.
    Jia Q; Liang W; Bates MK; Mani P; Lee W; Mukerjee S
    ACS Nano; 2015 Jan; 9(1):387-400. PubMed ID: 25559440
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Autobifunctional Mechanism of Jagged Pt Nanowires for Hydrogen Evolution Kinetics via End-to-End Simulation.
    Gu GH; Lim J; Wan C; Cheng T; Pu H; Kim S; Noh J; Choi C; Kim J; Goddard WA; Duan X; Jung Y
    J Am Chem Soc; 2021 Apr; 143(14):5355-5363. PubMed ID: 33730503
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A comparison of atomistic and continuum approaches to the study of bonding dynamics in electrocatalysis: microcantilever stress and in situ EXAFS observations of platinum bond expansion due to oxygen adsorption during the oxygen reduction reaction.
    Erickson EM; Oruc ME; Wetzel DJ; Cason MW; Hoang TT; Small MW; Li D; Frenkel AI; Gewirth AA; Nuzzo RG
    Anal Chem; 2014 Aug; 86(16):8368-75. PubMed ID: 25066179
    [TBL] [Abstract][Full Text] [Related]  

  • 15. One-Pot Synthesis of Concave Platinum-Cobalt Nanocrystals and Their Superior Catalytic Performances for Methanol Electrochemical Oxidation and Oxygen Electrochemical Reduction.
    Ma Y; Yin L; Yang T; Huang Q; He M; Zhao H; Zhang D; Wang M; Tong Z
    ACS Appl Mater Interfaces; 2017 Oct; 9(41):36164-36172. PubMed ID: 28949509
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bulk-like Pt(100)-oriented Ultrathin Surface: Combining the Merits of Single Crystals and Nanoparticles to Boost Oxygen Reduction Reaction.
    Gong S; Sun M; Lee Y; Becknell N; Zhang J; Wang Z; Zhang L; Niu Z
    Angew Chem Int Ed Engl; 2023 Jan; 62(4):e202214516. PubMed ID: 36420958
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Meso-structured platinum thin films: active and stable electrocatalysts for the oxygen reduction reaction.
    Kibsgaard J; Gorlin Y; Chen Z; Jaramillo TF
    J Am Chem Soc; 2012 May; 134(18):7758-65. PubMed ID: 22500676
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reactivity of chemisorbed oxygen atoms and their catalytic consequences during CH4-O2 catalysis on supported Pt clusters.
    Chin YH; Buda C; Neurock M; Iglesia E
    J Am Chem Soc; 2011 Oct; 133(40):15958-78. PubMed ID: 21919447
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Voltammetric surface dealloying of Pt bimetallic nanoparticles: an experimental and DFT computational analysis.
    Strasser P; Koh S; Greeley J
    Phys Chem Chem Phys; 2008 Jul; 10(25):3670-83. PubMed ID: 18563228
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tuning nanoparticle structure and surface strain for catalysis optimization.
    Zhang S; Zhang X; Jiang G; Zhu H; Guo S; Su D; Lu G; Sun S
    J Am Chem Soc; 2014 May; 136(21):7734-9. PubMed ID: 24803093
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.