These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
217 related articles for article (PubMed ID: 32320925)
1. The effect of a coding strategy that removes temporally masked pulses on speech perception by cochlear implant users. Lamping W; Goehring T; Marozeau J; Carlyon RP Hear Res; 2020 Jun; 391():107969. PubMed ID: 32320925 [TBL] [Abstract][Full Text] [Related]
2. Masking release with changing fundamental frequency: Electric acoustic stimulation resembles normal hearing subjects. Auinger AB; Riss D; Liepins R; Rader T; Keck T; Keintzel T; Kaider A; Baumgartner WD; Gstoettner W; Arnoldner C Hear Res; 2017 Jul; 350():226-234. PubMed ID: 28527538 [TBL] [Abstract][Full Text] [Related]
3. Psychoacoustic and phoneme identification measures in cochlear-implant and normal-hearing listeners. Goldsworthy RL; Delhorne LA; Braida LD; Reed CM Trends Amplif; 2013 Mar; 17(1):27-44. PubMed ID: 23429419 [TBL] [Abstract][Full Text] [Related]
4. Forward masking patterns by low and high-rate stimulation in cochlear implant users: Differences in masking effectiveness and spread of neural excitation. Zhou N; Dong L; Dixon S Hear Res; 2020 Apr; 389():107921. PubMed ID: 32097828 [TBL] [Abstract][Full Text] [Related]
5. Electric and acoustic harmonic integration predicts speech-in-noise performance in hybrid cochlear implant users. Bonnard D; Schwalje A; Gantz B; Choi I Hear Res; 2018 Sep; 367():223-230. PubMed ID: 29980380 [TBL] [Abstract][Full Text] [Related]
6. A physiologically-inspired model reproducing the speech intelligibility benefit in cochlear implant listeners with residual acoustic hearing. Zamaninezhad L; Hohmann V; Büchner A; Schädler MR; Jürgens T Hear Res; 2017 Feb; 344():50-61. PubMed ID: 27838372 [TBL] [Abstract][Full Text] [Related]
7. Formant frequency discrimination with a fine structure sound coding strategy for cochlear implants. Liepins R; Kaider A; Honeder C; Auinger AB; Dahm V; Riss D; Arnoldner C Hear Res; 2020 Jul; 392():107970. PubMed ID: 32339775 [TBL] [Abstract][Full Text] [Related]
8. Adjustments of the amplitude mapping function: Sensitivity of cochlear implant users and effects on subjective preference and speech recognition. Theelen-van den Hoek FL; Boymans M; van Dijk B; Dreschler WA Int J Audiol; 2016 Nov; 55(11):674-87. PubMed ID: 27447758 [TBL] [Abstract][Full Text] [Related]
9. Speech perception in tones and noise via cochlear implants reveals influence of spectral resolution on temporal processing. Oxenham AJ; Kreft HA Trends Hear; 2014 Oct; 18():. PubMed ID: 25315376 [TBL] [Abstract][Full Text] [Related]
10. Comparison of two channel selection criteria for noise suppression in cochlear implants. Hazrati O; Loizou PC J Acoust Soc Am; 2013 Mar; 133(3):1615-24. PubMed ID: 23464031 [TBL] [Abstract][Full Text] [Related]
11. Avoiding disconnection: An evaluation of telephone options for cochlear implant users. Marcrum SC; Picou EM; Steffens T Int J Audiol; 2017 Mar; 56(3):186-193. PubMed ID: 27809627 [TBL] [Abstract][Full Text] [Related]
12. Factors constraining the benefit to speech understanding of combining information from low-frequency hearing and a cochlear implant. Dorman MF; Cook S; Spahr A; Zhang T; Loiselle L; Schramm D; Whittingham J; Gifford R Hear Res; 2015 Apr; 322():107-11. PubMed ID: 25285624 [TBL] [Abstract][Full Text] [Related]
14. Evaluation of adaptive dynamic range optimization in adverse listening conditions for cochlear implants. Ali H; Hazrati O; Tobey EA; Hansen JH J Acoust Soc Am; 2014 Sep; 136(3):EL242. PubMed ID: 25190428 [TBL] [Abstract][Full Text] [Related]
15. Improving speech perception in noise with current focusing in cochlear implant users. Srinivasan AG; Padilla M; Shannon RV; Landsberger DM Hear Res; 2013 May; 299():29-36. PubMed ID: 23467170 [TBL] [Abstract][Full Text] [Related]
16. Simultaneous suppression of noise and reverberation in cochlear implants using a ratio masking strategy. Hazrati O; Sadjadi SO; Loizou PC; Hansen JH J Acoust Soc Am; 2013 Nov; 134(5):3759-65. PubMed ID: 24180786 [TBL] [Abstract][Full Text] [Related]
17. Factors influencing speech perception in noise for 5-year-old children using hearing aids or cochlear implants. Ching TY; Zhang VW; Flynn C; Burns L; Button L; Hou S; McGhie K; Van Buynder P Int J Audiol; 2018 May; 57(sup2):S70-S80. PubMed ID: 28687057 [TBL] [Abstract][Full Text] [Related]
18. Rate and onset cues can improve cochlear implant synthetic vowel recognition in noise. Mc Laughlin M; Reilly RB; Zeng FG J Acoust Soc Am; 2013 Mar; 133(3):1546-60. PubMed ID: 23464025 [TBL] [Abstract][Full Text] [Related]
19. Bilateral Versus Unilateral Cochlear Implantation in Adult Listeners: Speech-On-Speech Masking and Multitalker Localization. Rana B; Buchholz JM; Morgan C; Sharma M; Weller T; Konganda SA; Shirai K; Kawano A Trends Hear; 2017; 21():2331216517722106. PubMed ID: 28752811 [TBL] [Abstract][Full Text] [Related]
20. Optimising the effect of noise reduction algorithm ClearVoice in cochlear implant users by increasing the maximum comfort levels. Dingemanse JG; Goedegebure A Int J Audiol; 2018 Mar; 57(3):230-235. PubMed ID: 29065731 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]