These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 32321267)

  • 21. Photophysics of Molecular Aggregates from Excited State Diabatization.
    Carreras A; Uranga-Barandiaran O; Castet F; Casanova D
    J Chem Theory Comput; 2019 Apr; 15(4):2320-2330. PubMed ID: 30844271
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Ultrafast Electronic Relaxation through a Conical Intersection: Nonadiabatic Dynamics Disentangled through an Oscillator Strength-Based Diabatization Framework.
    Medders GR; Alguire EC; Jain A; Subotnik JE
    J Phys Chem A; 2017 Feb; 121(7):1425-1434. PubMed ID: 28098456
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The requisite electronic structure theory to describe photoexcited nonadiabatic dynamics: nonadiabatic derivative couplings and diabatic electronic couplings.
    Subotnik JE; Alguire EC; Ou Q; Landry BR; Fatehi S
    Acc Chem Res; 2015 May; 48(5):1340-50. PubMed ID: 25932499
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A perturbative formalism for electronic transitions through conical intersections in a fully quadratic vibronic model.
    Endicott JS; Joubert-Doriol L; Izmaylov AF
    J Chem Phys; 2014 Jul; 141(3):034104. PubMed ID: 25053298
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Full-dimensional ground- and excited-state potential energy surfaces and state couplings for photodissociation of thioanisole.
    Li SL; Truhlar DG
    J Chem Phys; 2017 Feb; 146(6):064301. PubMed ID: 28201879
    [TBL] [Abstract][Full Text] [Related]  

  • 26. HN2(2A') electronic manifold. II. Ab initio based double-sheeted DMBE potential energy surface via a global diabatization angle.
    Mota VC; Varandas AJ
    J Phys Chem A; 2008 Apr; 112(16):3768-86. PubMed ID: 18380492
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A fast scheme to calculate electronic couplings between P3HT polymer units using diabatic orbitals for charge transfer dynamics simulations.
    Yu T; Fabunmi F; Huang J; Sumpter BG; Jakowski J
    J Comput Chem; 2019 Jan; 40(2):532-542. PubMed ID: 30548654
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A new permutation-symmetry-adapted machine learning diabatization procedure and its application in MgH
    Li Y; Liu J; Li J; Zhai Y; Yang J; Qu Z; Li H
    J Chem Phys; 2021 Dec; 155(21):214102. PubMed ID: 34879675
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Direct calculation of coupled diabatic potential-energy surfaces for ammonia and mapping of a four-dimensional conical intersection seam.
    Nangia S; Truhlar DG
    J Chem Phys; 2006 Mar; 124(12):124309. PubMed ID: 16599676
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Practical approximation of the non-adiabatic coupling terms for same-symmetry interstate crossings by using adiabatic potential energies only.
    Baeck KK; An H
    J Chem Phys; 2017 Feb; 146(6):064107. PubMed ID: 28201877
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A novel algorithm for non-adiabatic direct dynamics using variational Gaussian wavepackets.
    Worth GA; Robb MA; Burghardt I
    Faraday Discuss; 2004; 127():307-23. PubMed ID: 15471352
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Direct Quantum Dynamics Using Grid-Based Wave Function Propagation and Machine-Learned Potential Energy Surfaces.
    Richings GW; Habershon S
    J Chem Theory Comput; 2017 Sep; 13(9):4012-4024. PubMed ID: 28719206
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Excitonic couplings between molecular crystal pairs by a multistate approximation.
    Aragó J; Troisi A
    J Chem Phys; 2015 Apr; 142(16):164107. PubMed ID: 25933752
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Evaluating Electronic Couplings for Excited State Charge Transfer Based on Maximum Occupation Method ΔSCF Quasi-Adiabatic States.
    Liu J; Zhang Y; Bao P; Yi Y
    J Chem Theory Comput; 2017 Feb; 13(2):843-851. PubMed ID: 28072522
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Quasi-Diabatic Representation for Nonadiabatic Dynamics Propagation.
    Mandal A; Yamijala SS; Huo P
    J Chem Theory Comput; 2018 Apr; 14(4):1828-1840. PubMed ID: 29489359
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Analysis of geometric phase effects in the quantum-classical Liouville formalism.
    Ryabinkin IG; Hsieh CY; Kapral R; Izmaylov AF
    J Chem Phys; 2014 Feb; 140(8):084104. PubMed ID: 24588145
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A diabatization protocol that includes spin-orbit coupling.
    Zeng T
    J Chem Phys; 2017 Apr; 146(14):144103. PubMed ID: 28411597
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Full-dimensional three-state potential energy surfaces and state couplings for photodissociation of thiophenol.
    Zhang L; Truhlar DG; Sun S
    J Chem Phys; 2019 Oct; 151(15):154306. PubMed ID: 31640376
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The DQ and DQΦ electronic structure diabatization methods: Validation for general applications.
    Hoyer CE; Parker K; Gagliardi L; Truhlar DG
    J Chem Phys; 2016 May; 144(19):194101. PubMed ID: 27208930
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Diabatization for Time-Dependent Density Functional Theory: Exciton Transfers and Related Conical Intersections.
    Tamura H
    J Phys Chem A; 2016 Nov; 120(46):9341-9347. PubMed ID: 27801581
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.