These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 32321274)

  • 21. An optimized interatomic potential for Cu-Ni alloys with the embedded-atom method.
    Onat B; Durukanoğlu S
    J Phys Condens Matter; 2014 Jan; 26(3):035404. PubMed ID: 24351396
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Performance and Cost Assessment of Machine Learning Interatomic Potentials.
    Zuo Y; Chen C; Li X; Deng Z; Chen Y; Behler J; Csányi G; Shapeev AV; Thompson AP; Wood MA; Ong SP
    J Phys Chem A; 2020 Jan; 124(4):731-745. PubMed ID: 31916773
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Nonlocal first-principles calculations in Cu-Au and other intermetallic alloys.
    Zhang Y; Kresse G; Wolverton C
    Phys Rev Lett; 2014 Feb; 112(7):075502. PubMed ID: 24579611
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Experiment-Driven Atomistic Materials Modeling: A Case Study Combining X-Ray Photoelectron Spectroscopy and Machine Learning Potentials to Infer the Structure of Oxygen-Rich Amorphous Carbon.
    Zarrouk T; Ibragimova R; Bartók AP; Caro MA
    J Am Chem Soc; 2024 May; 146(21):14645-14659. PubMed ID: 38749497
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Embedded correlated wavefunction schemes: theory and applications.
    Libisch F; Huang C; Carter EA
    Acc Chem Res; 2014 Sep; 47(9):2768-75. PubMed ID: 24873211
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Unraveling Thermal Transport Correlated with Atomistic Structures in Amorphous Gallium Oxide via Machine Learning Combined with Experiments.
    Liu Y; Liang H; Yang L; Yang G; Yang H; Song S; Mei Z; Csányi G; Cao B
    Adv Mater; 2023 Jun; 35(24):e2210873. PubMed ID: 36807658
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Structure and dynamics of warm dense aluminum: a molecular dynamics study with density functional theory and deep potential.
    Liu Q; Lu D; Chen M
    J Phys Condens Matter; 2020 Apr; 32(14):144002. PubMed ID: 31739300
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Development and validation of a ReaxFF reactive force field for Fe/Al/Ni alloys: molecular dynamics study of elastic constants, diffusion, and segregation.
    Shin YK; Kwak H; Zou C; Vasenkov AV; van Duin AC
    J Phys Chem A; 2012 Dec; 116(49):12163-74. PubMed ID: 23167515
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Probing the size- and constituent-mediated mechanical properties and deformation behavior in crystalline/amorphous nanolaminates.
    Wang YQ; Wu K; Zhang JY; Liu G; Sun J
    Nanoscale; 2018 Nov; 10(46):21827-21841. PubMed ID: 30457627
    [TBL] [Abstract][Full Text] [Related]  

  • 30. DFT+U studies of Cu doping and p-type compensation in crystalline and amorphous ZnS.
    Pham HH; Barkema GT; Wang LW
    Phys Chem Chem Phys; 2015 Oct; 17(39):26270-6. PubMed ID: 26382147
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Modeling the Phase-Change Memory Material, Ge
    Mocanu FC; Konstantinou K; Lee TH; Bernstein N; Deringer VL; Csányi G; Elliott SR
    J Phys Chem B; 2018 Sep; 122(38):8998-9006. PubMed ID: 30173522
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Crystal Structure Prediction of Binary Alloys via Deep Potential.
    Wang H; Zhang Y; Zhang L; Wang H
    Front Chem; 2020; 8():589795. PubMed ID: 33330377
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Machine learning interatomic potential for silicon-nitride (Si3N4) by active learning.
    Milardovich D; Wilhelmer C; Waldhoer D; Cvitkovich L; Sivaraman G; Grasser T
    J Chem Phys; 2023 May; 158(19):. PubMed ID: 37184017
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A Modified Embedded-Atom Method Potential for a Quaternary Fe-Cr-Si-Mo Solid Solution Alloy.
    Paul S; Schwen D; Short MP; Momeni K
    Materials (Basel); 2023 Apr; 16(7):. PubMed ID: 37049119
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Machine-Learning-Assisted Construction of Ternary Convex Hull Diagrams.
    Rossignol H; Minotakis M; Cobelli M; Sanvito S
    J Chem Inf Model; 2024 Mar; 64(6):1828-1840. PubMed ID: 38271693
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Importance of zero-point energy for crystalline ice phases: A comparison of force fields and density functional theory.
    Rasti S; Meyer J
    J Chem Phys; 2019 Jun; 150(23):234504. PubMed ID: 31228884
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The dynamics of copper intercalated molybdenum ditelluride.
    Onofrio N; Guzman D; Strachan A
    J Chem Phys; 2016 Nov; 145(19):194702. PubMed ID: 27875887
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Density-Functional Tight-Binding Parameters for Bulk Zirconium: A Case Study for Repulsive Potentials.
    Hutama AS; Chou CP; Nishimura Y; Witek HA; Irle S
    J Phys Chem A; 2021 Mar; 125(10):2184-2196. PubMed ID: 33645988
    [TBL] [Abstract][Full Text] [Related]  

  • 39. ReaxFF reactive force field for molecular dynamics simulations of liquid Cu and Zr metals.
    Huang HS; Ai LQ; van Duin ACT; Chen M; Lü YJ
    J Chem Phys; 2019 Sep; 151(9):094503. PubMed ID: 31492056
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Toward Fast and Reliable Potential Energy Surfaces for Metallic Pt Clusters by Hierarchical Delta Neural Networks.
    Sun G; Sautet P
    J Chem Theory Comput; 2019 Oct; 15(10):5614-5627. PubMed ID: 31465216
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.