BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 32321340)

  • 1. An adaptable analysis workflow for characterization of platelet spreading and morphology.
    Pike JA; Simms VA; Smith CW; Morgan NV; Khan AO; Poulter NS; Styles IB; Thomas SG
    Platelets; 2021 Jan; 32(1):54-58. PubMed ID: 32321340
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Machine Learning: Advanced Image Segmentation Using ilastik.
    Kreshuk A; Zhang C
    Methods Mol Biol; 2019; 2040():449-463. PubMed ID: 31432492
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Application of automated electron microscopy imaging and machine learning to characterise and quantify nanoparticle dispersion in aqueous media.
    Ilett M; Wills J; Rees P; Sharma S; Micklethwaite S; Brown A; Brydson R; Hondow N
    J Microsc; 2020 Sep; 279(3):177-184. PubMed ID: 31823372
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Finding and following: a deep learning-based pipeline for tracking platelets during thrombus formation
    McGovern AS; Larsson P; Tarlac V; Setiabakti N; Shabani Mashcool L; Hamilton JR; Boknäs N; Nunez-Iglesias J
    Platelets; 2024 Dec; 35(1):2344512. PubMed ID: 38722090
    [TBL] [Abstract][Full Text] [Related]  

  • 5. KNIME for Open-Source Bioimage Analysis: A Tutorial.
    Dietz C; Berthold MR
    Adv Anat Embryol Cell Biol; 2016; 219():179-97. PubMed ID: 27207367
    [TBL] [Abstract][Full Text] [Related]  

  • 6. ilastik: interactive machine learning for (bio)image analysis.
    Berg S; Kutra D; Kroeger T; Straehle CN; Kausler BX; Haubold C; Schiegg M; Ales J; Beier T; Rudy M; Eren K; Cervantes JI; Xu B; Beuttenmueller F; Wolny A; Zhang C; Koethe U; Hamprecht FA; Kreshuk A
    Nat Methods; 2019 Dec; 16(12):1226-1232. PubMed ID: 31570887
    [TBL] [Abstract][Full Text] [Related]  

  • 7. TeachOpenCADD-KNIME: A Teaching Platform for Computer-Aided Drug Design Using KNIME Workflows.
    Sydow D; Wichmann M; Rodríguez-Guerra J; Goldmann D; Landrum G; Volkamer A
    J Chem Inf Model; 2019 Oct; 59(10):4083-4086. PubMed ID: 31612715
    [TBL] [Abstract][Full Text] [Related]  

  • 8. From pixels to insights: Machine learning and deep learning for bioimage analysis.
    Jan M; Spangaro A; Lenartowicz M; Mattiazzi Usaj M
    Bioessays; 2024 Feb; 46(2):e2300114. PubMed ID: 38058114
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multi-objective Parameter Auto-tuning for Tissue Image Segmentation Workflows.
    Taveira LFR; Kurc T; Melo ACMA; Kong J; Bremer E; Saltz JH; Teodoro G
    J Digit Imaging; 2019 Jun; 32(3):521-533. PubMed ID: 30402669
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A semi-automated machine-learning based workflow for ellipsoid zone analysis in eyes with macular edema: SCORE2 pilot study.
    Etheridge T; Dobson ETA; Wiedenmann M; Papudesu C; Scott IU; Ip MS; Eliceiri KW; Blodi BA; Domalpally A
    PLoS One; 2020; 15(4):e0232494. PubMed ID: 32353052
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Workflows for microscopy image analysis and cellular phenotyping.
    Wollmann T; Erfle H; Eils R; Rohr K; Gunkel M
    J Biotechnol; 2017 Nov; 261():70-75. PubMed ID: 28757289
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fully automated platelet differential interference contrast image analysis via deep learning.
    Kempster C; Butler G; Kuznecova E; Taylor KA; Kriek N; Little G; Sowa MA; Sage T; Johnson LJ; Gibbins JM; Pollitt AY
    Sci Rep; 2022 Mar; 12(1):4614. PubMed ID: 35301400
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Integration of the ImageJ Ecosystem in the KNIME Analytics Platform.
    Dietz C; Rueden CT; Helfrich S; Dobson ETA; Horn M; Eglinger J; Evans EL; McLean DT; Novitskaya T; Ricke WA; Sherer NM; Zijlstra A; Berthold MR; Eliceiri KW
    Front Comput Sci; 2020 Mar; 2():. PubMed ID: 32905440
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantifying co-cultured cell phenotypes in high-throughput using pixel-based classification.
    Logan DJ; Shan J; Bhatia SN; Carpenter AE
    Methods; 2016 Mar; 96():6-11. PubMed ID: 26687239
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Automatic DNA Diagnosis for 1D Gel Electrophoresis Images using Bio-image Processing Technique.
    Intarapanich A; Kaewkamnerd S; Shaw PJ; Ukosakit K; Tragoonrung S; Tongsima S
    BMC Genomics; 2015; 16 Suppl 12(Suppl 12):S15. PubMed ID: 26681167
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Workflow for high-content, individual cell quantification of fluorescent markers from universal microscope data, supported by open source software.
    Stockwell SR; Mittnacht S
    J Vis Exp; 2014 Dec; (94):. PubMed ID: 25549286
    [TBL] [Abstract][Full Text] [Related]  

  • 17. PET segmentation of bulky tumors: Strategies and workflows to improve inter-observer variability.
    Pfaehler E; Burggraaff C; Kramer G; Zijlstra J; Hoekstra OS; Jalving M; Noordzij W; Brouwers AH; Stevenson MG; de Jong J; Boellaard R
    PLoS One; 2020; 15(3):e0230901. PubMed ID: 32226030
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hep G2 cell culture confluence measurement in phase-contrast micrographs - a user-friendly, open-source software-based approach.
    Yordanov YI
    Toxicol Mech Methods; 2020 Feb; 30(2):146-152. PubMed ID: 31736404
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Workflow and metrics for image quality control in large-scale high-content screens.
    Bray MA; Fraser AN; Hasaka TP; Carpenter AE
    J Biomol Screen; 2012 Feb; 17(2):266-74. PubMed ID: 21956170
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Segmentation and quantification of subcellular structures in fluorescence microscopy images using Squassh.
    Rizk A; Paul G; Incardona P; Bugarski M; Mansouri M; Niemann A; Ziegler U; Berger P; Sbalzarini IF
    Nat Protoc; 2014 Mar; 9(3):586-96. PubMed ID: 24525752
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.