These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
166 related articles for article (PubMed ID: 32321407)
1. Hispidin and Lepidine E: Two Natural Compounds and Folic Acid as Potential Inhibitors of 2019-novel Coronavirus Main Protease (2019- nCoVM Serseg T; Benarous K; Yousfi M Curr Comput Aided Drug Des; 2021; 17(3):469-479. PubMed ID: 32321407 [TBL] [Abstract][Full Text] [Related]
2. Screening potential FDA-approved inhibitors of the SARS-CoV-2 major protease 3CL Liu WS; Li HG; Ding CH; Zhang HX; Wang RR; Li JQ Aging (Albany NY); 2021 Mar; 13(5):6258-6272. PubMed ID: 33678621 [TBL] [Abstract][Full Text] [Related]
3. Novel cyclohexanone compound as a potential ligand against SARS-CoV-2 main-protease. Basu S; Veeraraghavan B; Ramaiah S; Anbarasu A Microb Pathog; 2020 Dec; 149():104546. PubMed ID: 33011363 [TBL] [Abstract][Full Text] [Related]
4. Comparative Antiviral Efficacy of Viral Protease Inhibitors against the Novel SARS-CoV-2 In Vitro. Zhang L; Liu J; Cao R; Xu M; Wu Y; Shang W; Wang X; Zhang H; Jiang X; Sun Y; Hu H; Li Y; Zou G; Zhang M; Zhao L; Li W; Guo X; Zhuang X; Yang XL; Shi ZL; Deng F; Hu Z; Xiao G; Wang M; Zhong W Virol Sin; 2020 Dec; 35(6):776-784. PubMed ID: 32910347 [TBL] [Abstract][Full Text] [Related]
5. The inhibitory effects of PGG and EGCG against the SARS-CoV-2 3C-like protease. Chiou WC; Chen JC; Chen YT; Yang JM; Hwang LH; Lyu YS; Yang HY; Huang C Biochem Biophys Res Commun; 2022 Feb; 591():130-136. PubMed ID: 33454058 [TBL] [Abstract][Full Text] [Related]
6. Investigating the antiviral therapeutic potentialities of marine polycyclic lamellarin pyrrole alkaloids as promising inhibitors for SARS-CoV-2 and Zika main proteases (Mpro). Pereira F; Bedda L; Tammam MA; Alabdullah AK; Arafa R; El-Demerdash A J Biomol Struct Dyn; 2024 May; 42(8):3983-4001. PubMed ID: 37232419 [TBL] [Abstract][Full Text] [Related]
7. Structure-Based Virtual Screening to Discover Potential Lead Molecules for the SARS-CoV-2 Main Protease. Gahlawat A; Kumar N; Kumar R; Sandhu H; Singh IP; Singh S; Sjöstedt A; Garg P J Chem Inf Model; 2020 Dec; 60(12):5781-5793. PubMed ID: 32687345 [TBL] [Abstract][Full Text] [Related]
8. Interactive Molecular Dynamics in Virtual Reality Is an Effective Tool for Flexible Substrate and Inhibitor Docking to the SARS-CoV-2 Main Protease. Deeks HM; Walters RK; Barnoud J; Glowacki DR; Mulholland AJ J Chem Inf Model; 2020 Dec; 60(12):5803-5814. PubMed ID: 33174415 [TBL] [Abstract][Full Text] [Related]
10. An Updated Review on SARS-CoV-2 Main Proteinase (M Sabbah DA; Hajjo R; Bardaweel SK; Zhong HA Curr Top Med Chem; 2021; 21(6):442-460. PubMed ID: 33292134 [TBL] [Abstract][Full Text] [Related]
11. Fragment-based in silico design of SARS-CoV-2 main protease inhibitors. Ahmad S; Usman Mirza M; Yean Kee L; Nazir M; Abdul Rahman N; Trant JF; Abdullah I Chem Biol Drug Des; 2021 Oct; 98(4):604-619. PubMed ID: 34148292 [TBL] [Abstract][Full Text] [Related]
12. Targeting novel structural and functional features of coronavirus protease nsp5 (3CL Roe MK; Junod NA; Young AR; Beachboard DC; Stobart CC J Gen Virol; 2021 Mar; 102(3):. PubMed ID: 33507143 [TBL] [Abstract][Full Text] [Related]
13. 2-Pyridone natural products as inhibitors of SARS-CoV-2 main protease. Forrestall KL; Burley DE; Cash MK; Pottie IR; Darvesh S Chem Biol Interact; 2021 Feb; 335():109348. PubMed ID: 33278462 [TBL] [Abstract][Full Text] [Related]
14. Binding mechanism of inhibitors to SARS-CoV-2 main protease deciphered by multiple replica molecular dynamics simulations. Liang S; Liu X; Zhang S; Li M; Zhang Q; Chen J Phys Chem Chem Phys; 2022 Jan; 24(3):1743-1759. PubMed ID: 34985081 [TBL] [Abstract][Full Text] [Related]
15. Optimization of quenched fluorescent peptide substrates of SARS-CoV-2 3CL Cesar Ramos de Jesus H; Solis N; Machado Y; Pablos I; Bell PA; Kappelhoff R; Grin PM; Sorgi CA; Butler GS; Overall CM J Virol; 2024 Jun; 98(6):e0004924. PubMed ID: 38742901 [TBL] [Abstract][Full Text] [Related]
16. Combining Different Docking Engines and Consensus Strategies to Design and Validate Optimized Virtual Screening Protocols for the SARS-CoV-2 3CL Protease. Manelfi C; Gossen J; Gervasoni S; Talarico C; Albani S; Philipp BJ; Musiani F; Vistoli G; Rossetti G; Beccari AR; Pedretti A Molecules; 2021 Feb; 26(4):. PubMed ID: 33557115 [TBL] [Abstract][Full Text] [Related]
17. In silico Study to Evaluate the Antiviral Activity of Novel Structures against 3C-like Protease of Novel Coronavirus (COVID-19) and SARS-CoV. Chunduru K; Sankhe R; Begum F; Sodum N; Kumar N; Kishore A; Shenoy RR; Rao CM; Saravu K Med Chem; 2021; 17(4):380-395. PubMed ID: 32720605 [TBL] [Abstract][Full Text] [Related]
18. The Mpro structure-based modifications of ebselen derivatives for improved antiviral activity against SARS-CoV-2 virus. Qiao Z; Wei N; Jin L; Zhang H; Luo J; Zhang Y; Wang K Bioorg Chem; 2021 Dec; 117():105455. PubMed ID: 34740055 [TBL] [Abstract][Full Text] [Related]
19. A Computer-Aided Drug Design Approach to Predict Marine Drug-Like Leads for SARS-CoV-2 Main Protease Inhibition. Gaudêncio SP; Pereira F Mar Drugs; 2020 Dec; 18(12):. PubMed ID: 33322052 [TBL] [Abstract][Full Text] [Related]
20. Docking Paradigm in Drug Design. Sulimov VB; Kutov DC; Taschilova AS; Ilin IS; Tyrtyshnikov EE; Sulimov AV Curr Top Med Chem; 2021; 21(6):507-546. PubMed ID: 33292135 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]