These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
245 related articles for article (PubMed ID: 32321419)
1. Statistical methods for predicting tuberculosis incidence based on data from Guangxi, China. Zheng Y; Zhang L; Wang L; Rifhat R BMC Infect Dis; 2020 Apr; 20(1):300. PubMed ID: 32321419 [TBL] [Abstract][Full Text] [Related]
2. A hybrid seasonal prediction model for tuberculosis incidence in China. Cao S; Wang F; Tam W; Tse LA; Kim JH; Liu J; Lu Z BMC Med Inform Decis Mak; 2013 May; 13():56. PubMed ID: 23638635 [TBL] [Abstract][Full Text] [Related]
3. Applying SARIMA, ETS, and hybrid models for prediction of tuberculosis incidence rate in Taiwan. Kuan MM PeerJ; 2022; 10():e13117. PubMed ID: 36164599 [TBL] [Abstract][Full Text] [Related]
4. Seasonality and Trend Forecasting of Tuberculosis Prevalence Data in Eastern Cape, South Africa, Using a Hybrid Model. Azeez A; Obaromi D; Odeyemi A; Ndege J; Muntabayi R Int J Environ Res Public Health; 2016 Jul; 13(8):. PubMed ID: 27472353 [TBL] [Abstract][Full Text] [Related]
5. Predictive study of tuberculosis incidence by time series method and Elman neural network in Kashgar, China. Zheng Y; Zhang X; Wang X; Wang K; Cui Y BMJ Open; 2021 Jan; 11(1):e041040. PubMed ID: 33478962 [TBL] [Abstract][Full Text] [Related]
6. Seasonality and Trend Forecasting of Tuberculosis Incidence in Chongqing, China. Liao Z; Zhang X; Zhang Y; Peng D Interdiscip Sci; 2019 Mar; 11(1):77-85. PubMed ID: 30734907 [TBL] [Abstract][Full Text] [Related]
7. The research of ARIMA, GM(1,1), and LSTM models for prediction of TB cases in China. Zhao D; Zhang H; Cao Q; Wang Z; He S; Zhou M; Zhang R PLoS One; 2022; 17(2):e0262734. PubMed ID: 35196309 [TBL] [Abstract][Full Text] [Related]
8. Spatiotemporal characteristics and the epidemiology of tuberculosis in China from 2004 to 2017 by the nationwide surveillance system. Zuo Z; Wang M; Cui H; Wang Y; Wu J; Qi J; Pan K; Sui D; Liu P; Xu A BMC Public Health; 2020 Aug; 20(1):1284. PubMed ID: 32843011 [TBL] [Abstract][Full Text] [Related]
9. A hybrid model for tuberculosis forecasting based on empirical mode decomposition in China. Zhao R; Liu J; Zhao Z; Zhai M; Ren H; Wang X; Li Y; Cui Y; Qiao Y; Ren J; Chen L; Qiu L BMC Infect Dis; 2023 Oct; 23(1):665. PubMed ID: 37805543 [TBL] [Abstract][Full Text] [Related]
10. Research on hand, foot and mouth disease incidence forecasting using hybrid model in mainland China. Zhao D; Zhang H; Zhang R; He S BMC Public Health; 2023 Mar; 23(1):619. PubMed ID: 37003988 [TBL] [Abstract][Full Text] [Related]
11. Temporal trends analysis of tuberculosis morbidity in mainland China from 1997 to 2025 using a new SARIMA-NARNNX hybrid model. Wang Y; Xu C; Zhang S; Wang Z; Yang L; Zhu Y; Yuan J BMJ Open; 2019 Jul; 9(7):e024409. PubMed ID: 31371283 [TBL] [Abstract][Full Text] [Related]
12. Forecasting the incidence of tuberculosis in China using the seasonal auto-regressive integrated moving average (SARIMA) model. Mao Q; Zhang K; Yan W; Cheng C J Infect Public Health; 2018; 11(5):707-712. PubMed ID: 29730253 [TBL] [Abstract][Full Text] [Related]
13. A new hybrid model SARIMA-ETS-SVR for seasonal influenza incidence prediction in mainland China. Zhao D; Zhang R J Infect Dev Ctries; 2023 Nov; 17(11):1581-1590. PubMed ID: 38064398 [TBL] [Abstract][Full Text] [Related]
14. Application of exponential smoothing method and SARIMA model in predicting the number of admissions in a third-class hospital in Zhejiang Province. Yang W; Su A; Ding L BMC Public Health; 2023 Nov; 23(1):2309. PubMed ID: 37993836 [TBL] [Abstract][Full Text] [Related]
15. Study on the prediction effect of a combined model of SARIMA and LSTM based on SSA for influenza in Shanxi Province, China. Zhao Z; Zhai M; Li G; Gao X; Song W; Wang X; Ren H; Cui Y; Qiao Y; Ren J; Chen L; Qiu L BMC Infect Dis; 2023 Feb; 23(1):71. PubMed ID: 36747126 [TBL] [Abstract][Full Text] [Related]
16. Application of a combined model with seasonal autoregressive integrated moving average and support vector regression in forecasting hand-foot-mouth disease incidence in Wuhan, China. Zou JJ; Jiang GF; Xie XX; Huang J; Yang XB Medicine (Baltimore); 2019 Feb; 98(6):e14195. PubMed ID: 30732135 [TBL] [Abstract][Full Text] [Related]
17. Comparison of autoregressive integrated moving average model and generalised regression neural network model for prediction of haemorrhagic fever with renal syndrome in China: a time-series study. Wang YW; Shen ZZ; Jiang Y BMJ Open; 2019 Jun; 9(6):e025773. PubMed ID: 31209084 [TBL] [Abstract][Full Text] [Related]
18. Predicting the incidence of rifampicin resistant tuberculosis in Yunnan, China: a seasonal time series analysis based on routine surveillance data. Yang YB; Liu LL; Chen JO; Li L; Qiu YB; Wu W; Xu L BMC Infect Dis; 2024 Aug; 24(1):835. PubMed ID: 39152374 [TBL] [Abstract][Full Text] [Related]
19. Application of a hybrid model in predicting the incidence of tuberculosis in a Chinese population. Li Z; Wang Z; Song H; Liu Q; He B; Shi P; Ji Y; Xu D; Wang J Infect Drug Resist; 2019; 12():1011-1020. PubMed ID: 31118707 [No Abstract] [Full Text] [Related]
20. A comparative study of two methods to predict the incidence of hepatitis B in Guangxi, China. Zheng Y; Zhang L; Zhu X; Guo G PLoS One; 2020; 15(6):e0234660. PubMed ID: 32579598 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]