These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

243 related articles for article (PubMed ID: 32321744)

  • 1. Rapid Learning of Odor-Value Association in the Olfactory Striatum.
    Millman DJ; Murthy VN
    J Neurosci; 2020 May; 40(22):4335-4347. PubMed ID: 32321744
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Task-Demand-Dependent Neural Representation of Odor Information in the Olfactory Bulb and Posterior Piriform Cortex.
    Wang D; Liu P; Mao X; Zhou Z; Cao T; Xu J; Sun C; Li A
    J Neurosci; 2019 Dec; 39(50):10002-10018. PubMed ID: 31672791
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Neural System that Represents the Association of Odors with Rewarded Outcomes and Promotes Behavioral Engagement.
    Gadziola MA; Stetzik LA; Wright KN; Milton AJ; Arakawa K; Del Mar Cortijo M; Wesson DW
    Cell Rep; 2020 Jul; 32(3):107919. PubMed ID: 32697986
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mapping of Learned Odor-Induced Motivated Behaviors in the Mouse Olfactory Tubercle.
    Murata K; Kanno M; Ieki N; Mori K; Yamaguchi M
    J Neurosci; 2015 Jul; 35(29):10581-99. PubMed ID: 26203152
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The olfactory tubercle encodes odor valence in behaving mice.
    Gadziola MA; Tylicki KA; Christian DL; Wesson DW
    J Neurosci; 2015 Mar; 35(11):4515-27. PubMed ID: 25788670
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Distinct representation of cue-outcome association by D1 and D2 neurons in the ventral striatum's olfactory tubercle.
    Martiros N; Kapoor V; Kim SE; Murthy VN
    Elife; 2022 Jun; 11():. PubMed ID: 35708179
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Neural Representation of Goal-Directed Actions and Outcomes in the Ventral Striatum's Olfactory Tubercle.
    Gadziola MA; Wesson DW
    J Neurosci; 2016 Jan; 36(2):548-60. PubMed ID: 26758844
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Glutamatergic Neurons in the Piriform Cortex Influence the Activity of D1- and D2-Type Receptor-Expressing Olfactory Tubercle Neurons.
    White KA; Zhang YF; Zhang Z; Bhattarai JP; Moberly AH; In 't Zandt EE; Pena-Bravo JI; Mi H; Jia X; Fuccillo MV; Xu F; Ma M; Wesson DW
    J Neurosci; 2019 Nov; 39(48):9546-9559. PubMed ID: 31628176
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Arc-Expressing Neuronal Ensembles Supporting Pattern Separation Require Adrenergic Activity in Anterior Piriform Cortex: An Exploration of Neural Constraints on Learning.
    Shakhawat AM; Gheidi A; MacIntyre IT; Walsh ML; Harley CW; Yuan Q
    J Neurosci; 2015 Oct; 35(41):14070-5. PubMed ID: 26468206
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spontaneous activity in the piriform cortex extends the dynamic range of cortical odor coding.
    Tantirigama ML; Huang HH; Bekkers JM
    Proc Natl Acad Sci U S A; 2017 Feb; 114(9):2407-2412. PubMed ID: 28196887
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Experience-dependent evolution of odor mixture representations in piriform cortex.
    Berners-Lee A; Shtrahman E; Grimaud J; Murthy VN
    PLoS Biol; 2023 Apr; 21(4):e3002086. PubMed ID: 37098044
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Population Coding in an Innately Relevant Olfactory Area.
    Iurilli G; Datta SR
    Neuron; 2017 Mar; 93(5):1180-1197.e7. PubMed ID: 28238549
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transient and Persistent Representations of Odor Value in Prefrontal Cortex.
    Wang PY; Boboila C; Chin M; Higashi-Howard A; Shamash P; Wu Z; Stein NP; Abbott LF; Axel R
    Neuron; 2020 Oct; 108(1):209-224.e6. PubMed ID: 32827456
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Odor identity coding by distributed ensembles of neurons in the mouse olfactory cortex.
    Roland B; Deneux T; Franks KM; Bathellier B; Fleischmann A
    Elife; 2017 May; 6():. PubMed ID: 28489003
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Visualizing the engram: learning stabilizes odor representations in the olfactory network.
    Shakhawat AM; Gheidi A; Hou Q; Dhillon SK; Marrone DF; Harley CW; Yuan Q
    J Neurosci; 2014 Nov; 34(46):15394-401. PubMed ID: 25392506
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Information for decision-making and stimulus identification is multiplexed in sensory cortex.
    Gire DH; Whitesell JD; Doucette W; Restrepo D
    Nat Neurosci; 2013 Aug; 16(8):991-3. PubMed ID: 23792942
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Odor Perception on the Two Sides of the Brain: Consistency Despite Randomness.
    Schaffer ES; Stettler DD; Kato D; Choi GB; Axel R; Abbott LF
    Neuron; 2018 May; 98(4):736-742.e3. PubMed ID: 29706585
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Decoding Odor Mixtures in the Dog Brain: An Awake fMRI Study.
    Prichard A; Chhibber R; King J; Athanassiades K; Spivak M; Berns GS
    Chem Senses; 2020 Dec; 45(9):833-844. PubMed ID: 33179730
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The distributed circuit within the piriform cortex makes odor discrimination robust.
    Srinivasan S; Stevens CF
    J Comp Neurol; 2018 Dec; 526(17):2725-2743. PubMed ID: 30014545
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neuronal dynamics supporting formation and recombination of cross-modal olfactory-tactile association in the rat hippocampal formation.
    Boisselier L; Gervasoni D; Garcia S; Ferry B; Gervais R
    J Neurophysiol; 2018 Mar; 119(3):1140-1152. PubMed ID: 29212919
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.