These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
1350 related articles for article (PubMed ID: 32321856)
21. In silico study of azithromycin, chloroquine and hydroxychloroquine and their potential mechanisms of action against SARS-CoV-2 infection. Braz HLB; Silveira JAM; Marinho AD; de Moraes MEA; Moraes Filho MO; Monteiro HSA; Jorge RJB Int J Antimicrob Agents; 2020 Sep; 56(3):106119. PubMed ID: 32738306 [TBL] [Abstract][Full Text] [Related]
22. Identification of saquinavir as a potent inhibitor of dimeric SARS-CoV2 main protease through MM/GBSA. Bello M; Martínez-Muñoz A; Balbuena-Rebolledo I J Mol Model; 2020 Nov; 26(12):340. PubMed ID: 33184722 [TBL] [Abstract][Full Text] [Related]
23. Crystal structures of coronaviral main proteases in complex with the non-covalent inhibitor X77. Jiang H; Li W; Zhou X; Zhang J; Li J Int J Biol Macromol; 2024 Sep; 276(Pt 1):133706. PubMed ID: 38981557 [TBL] [Abstract][Full Text] [Related]
24. Clean Grinding Technique: A Facile Synthesis and In Silico Antiviral Activity of Hydrazones, Pyrazoles, and Pyrazines Bearing Thiazole Moiety against SARS-CoV-2 Main Protease (M Abu-Melha S; Edrees MM; Riyadh SM; Abdelaziz MR; Elfiky AA; Gomha SM Molecules; 2020 Oct; 25(19):. PubMed ID: 33036293 [TBL] [Abstract][Full Text] [Related]
25. Structural stability of SARS-CoV-2 3CLpro and identification of quercetin as an inhibitor by experimental screening. Abian O; Ortega-Alarcon D; Jimenez-Alesanco A; Ceballos-Laita L; Vega S; Reyburn HT; Rizzuti B; Velazquez-Campoy A Int J Biol Macromol; 2020 Dec; 164():1693-1703. PubMed ID: 32745548 [TBL] [Abstract][Full Text] [Related]
26. Repurposing approved drugs as potential inhibitors of 3CL-protease of SARS-CoV-2: Virtual screening and structure based drug design. Meyer-Almes FJ Comput Biol Chem; 2020 Oct; 88():107351. PubMed ID: 32769050 [TBL] [Abstract][Full Text] [Related]
27. In silico drug discovery of major metabolites from spices as SARS-CoV-2 main protease inhibitors. Ibrahim MAA; Abdelrahman AHM; Hussien TA; Badr EAA; Mohamed TA; El-Seedi HR; Pare PW; Efferth T; Hegazy MF Comput Biol Med; 2020 Nov; 126():104046. PubMed ID: 33065388 [TBL] [Abstract][Full Text] [Related]
28. Putative Inhibitors of SARS-CoV-2 Main Protease from A Library of Marine Natural Products: A Virtual Screening and Molecular Modeling Study. Gentile D; Patamia V; Scala A; Sciortino MT; Piperno A; Rescifina A Mar Drugs; 2020 Apr; 18(4):. PubMed ID: 32340389 [TBL] [Abstract][Full Text] [Related]
29. Discovery of M Protease Inhibitors Encoded by SARS-CoV-2. Hung HC; Ke YY; Huang SY; Huang PN; Kung YA; Chang TY; Yen KJ; Peng TT; Chang SE; Huang CT; Tsai YR; Wu SH; Lee SJ; Lin JH; Liu BS; Sung WC; Shih SR; Chen CT; Hsu JT Antimicrob Agents Chemother; 2020 Aug; 64(9):. PubMed ID: 32669265 [TBL] [Abstract][Full Text] [Related]
30. Screening and evaluation of approved drugs as inhibitors of main protease of SARS-CoV-2. Tripathi PK; Upadhyay S; Singh M; Raghavendhar S; Bhardwaj M; Sharma P; Patel AK Int J Biol Macromol; 2020 Dec; 164():2622-2631. PubMed ID: 32853604 [TBL] [Abstract][Full Text] [Related]
31. High Throughput Virtual Screening to Discover Inhibitors of the Main Protease of the Coronavirus SARS-CoV-2. Olubiyi OO; Olagunju M; Keutmann M; Loschwitz J; Strodel B Molecules; 2020 Jul; 25(14):. PubMed ID: 32668701 [TBL] [Abstract][Full Text] [Related]
32. Virtual Double-System Single-Box: A Nonequilibrium Alchemical Technique for Absolute Binding Free Energy Calculations: Application to Ligands of the SARS-CoV-2 Main Protease. Macchiagodena M; Pagliai M; Karrenbrock M; Guarnieri G; Iannone F; Procacci P J Chem Theory Comput; 2020 Nov; 16(11):7160-7172. PubMed ID: 33090785 [TBL] [Abstract][Full Text] [Related]
33. Potential of coronavirus 3C-like protease inhibitors for the development of new anti-SARS-CoV-2 drugs: Insights from structures of protease and inhibitors. He J; Hu L; Huang X; Wang C; Zhang Z; Wang Y; Zhang D; Ye W Int J Antimicrob Agents; 2020 Aug; 56(2):106055. PubMed ID: 32534187 [TBL] [Abstract][Full Text] [Related]
34. Identify potent SARS-CoV-2 main protease inhibitors via accelerated free energy perturbation-based virtual screening of existing drugs. Li Z; Li X; Huang YY; Wu Y; Liu R; Zhou L; Lin Y; Wu D; Zhang L; Liu H; Xu X; Yu K; Zhang Y; Cui J; Zhan CG; Wang X; Luo HB Proc Natl Acad Sci U S A; 2020 Nov; 117(44):27381-27387. PubMed ID: 33051297 [TBL] [Abstract][Full Text] [Related]
35. Discovery of potent inhibitors for SARS-CoV-2's main protease by ligand-based/structure-based virtual screening, MD simulations, and binding energy calculations. Abu-Saleh AAA; Awad IE; Yadav A; Poirier RA Phys Chem Chem Phys; 2020 Oct; 22(40):23099-23106. PubMed ID: 33025993 [TBL] [Abstract][Full Text] [Related]
36. Why Are Lopinavir and Ritonavir Effective against the Newly Emerged Coronavirus 2019? Atomistic Insights into the Inhibitory Mechanisms. Nutho B; Mahalapbutr P; Hengphasatporn K; Pattaranggoon NC; Simanon N; Shigeta Y; Hannongbua S; Rungrotmongkol T Biochemistry; 2020 May; 59(18):1769-1779. PubMed ID: 32293875 [TBL] [Abstract][Full Text] [Related]