These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
155 related articles for article (PubMed ID: 32321998)
1. Trichoderma virens Gl006 and Bacillus velezensis Bs006: a compatible interaction controlling Fusarium wilt of cape gooseberry. Izquierdo-García LF; González-Almario A; Cotes AM; Moreno-Velandia CA Sci Rep; 2020 Apr; 10(1):6857. PubMed ID: 32321998 [TBL] [Abstract][Full Text] [Related]
2. Effects of Fengycins and Iturins on Moreno-Velandia CA; Ongena M; Cotes AM Phytopathology; 2021 Dec; 111(12):2227-2237. PubMed ID: 34032523 [No Abstract] [Full Text] [Related]
3. Controlling Fusarium wilt of cape gooseberry by microbial consortia. García D; González-Almario A; Cotes AM Lett Appl Microbiol; 2023 Jul; 76(7):. PubMed ID: 37348479 [TBL] [Abstract][Full Text] [Related]
4. Physiological Response of Cape Gooseberry Seedlings to Three Biological Control Agents Under Chaves-Gómez JL; Chavez-Arias CC; Cotes Prado AM; Gómez-Caro S; Restrepo-Díaz H Plant Dis; 2020 Feb; 104(2):388-397. PubMed ID: 31809256 [TBL] [Abstract][Full Text] [Related]
5. Biosynthesis of Cyclic Lipopeptides by Bacillus velezensis Bs006 and its Antagonistic Activity are Modulated by the Temperature and Culture Media Conditions. Moreno-Velandia CA; Ongena M; Kloepper JW; Cotes AM Curr Microbiol; 2021 Sep; 78(9):3505-3515. PubMed ID: 34292378 [TBL] [Abstract][Full Text] [Related]
6. Mixtures of Biological Control Agents and Organic Additives Improve Physiological Behavior in Cape Gooseberry Plants under Vascular Wilt Disease. Chaves-Gómez JL; Chávez-Arias CC; Prado AMC; Gómez-Caro S; Restrepo-Díaz H Plants (Basel); 2021 Sep; 10(10):. PubMed ID: 34685868 [TBL] [Abstract][Full Text] [Related]
7. Putative Novel Effector Genes Revealed by the Genomic Analysis of the Phytopathogenic Fungus Simbaqueba J; Rodríguez EA; Burbano-David D; González C; Caro-Quintero A Front Microbiol; 2020; 11():593915. PubMed ID: 33537009 [TBL] [Abstract][Full Text] [Related]
8. Evidence for horizontal gene transfer and separation of effector recognition from effector function revealed by analysis of effector genes shared between cape gooseberry- and tomato-infecting formae speciales of Fusarium oxysporum. Simbaqueba J; Catanzariti AM; González C; Jones DA Mol Plant Pathol; 2018 Oct; 19(10):2302-2318. PubMed ID: 29786161 [TBL] [Abstract][Full Text] [Related]
9. Studying the microbiome of suppressive soils against vascular wilt, caused by Fusarium oxysporum in cape gooseberry (Physalis peruviana). Bautista D; García D; Dávila L; Caro-Quintero A; Cotes AM; González A; Zuluaga AP Environ Microbiol Rep; 2023 Dec; 15(6):757-768. PubMed ID: 37675926 [TBL] [Abstract][Full Text] [Related]
10. Physiological Response of Cape Gooseberry Plants to Mendoza-Vargas LA; Villamarín-Romero WP; Cotrino-Tierradentro AS; Ramírez-Gil JG; Chávez-Arias CC; Restrepo-Díaz H; Gómez-Caro S Front Plant Sci; 2021; 12():702842. PubMed ID: 34421951 [TBL] [Abstract][Full Text] [Related]
11. Association analysis for disease resistance to Fusarium oxysporum in cape gooseberry (Physalis peruviana L). Osorio-Guarín JA; Enciso-Rodríguez FE; González C; Fernández-Pozo N; Mueller LA; Barrero LS BMC Genomics; 2016 Mar; 17():248. PubMed ID: 26988219 [TBL] [Abstract][Full Text] [Related]
12. Implication of plant growth-promoting rhizobacteria of El-Sersawy MM; Hassan SE; El-Ghamry AA; El-Gwad AMA; Fouda A Biomol Concepts; 2021 Dec; 12(1):197-214. PubMed ID: 35041304 [TBL] [Abstract][Full Text] [Related]
13. Dong H; Gao R; Dong Y; Yao Q; Zhu H Int J Mol Sci; 2023 May; 24(10):. PubMed ID: 37239871 [TBL] [Abstract][Full Text] [Related]
14. Screening of Different Cháves-Gómez JL; Becerra-Mutis LM; Chávez-Arias CC; Restrepo-Díaz H; Gómez-Caro S Front Plant Sci; 2020; 11():806. PubMed ID: 32655597 [TBL] [Abstract][Full Text] [Related]
15. Embedding Bacillus velezensis NH-1 in Microcapsules for Biocontrol of Cucumber Luo W; Liu L; Qi G; Yang F; Shi X; Zhao X Appl Environ Microbiol; 2019 May; 85(9):. PubMed ID: 30824441 [TBL] [Abstract][Full Text] [Related]
16. Screening Biocontrol Agents for Cash Crop Fusarium Wilt Based on Fusaric Acid Tolerance and Antagonistic Activity against Guo Q; Li S; Dong L; Su Z; Wang P; Liu X; Ma P Toxins (Basel); 2023 Jun; 15(6):. PubMed ID: 37368682 [TBL] [Abstract][Full Text] [Related]
17. Designing a synthetic microbial community devoted to biological control: The case study of Fusarium wilt of banana. Prigigallo MI; Gómez-Lama Cabanás C; Mercado-Blanco J; Bubici G Front Microbiol; 2022; 13():967885. PubMed ID: 35992653 [No Abstract] [Full Text] [Related]
18. Harnessing the power of native biocontrol agents against wilt disease of Pigeonpea incited by Fusarium udum. Reddy BD; Kumar B; Sahni S; Yashaswini G; Karthik S; Reddy MSS; Kumar R; Mukherjee U; Krishna KS Sci Rep; 2024 May; 14(1):12500. PubMed ID: 38822009 [TBL] [Abstract][Full Text] [Related]
19. Genome sequencing and analysis of Yang F; Jiang H; Ma K; Wang X; Liang S; Cai Y; Jing Y; Tian B; Shi X Front Microbiol; 2023; 14():1279695. PubMed ID: 37901818 [TBL] [Abstract][Full Text] [Related]
20. Isolation, identification, and evaluation of the biocontrol potential of a Bacillus velezensis strain against tobacco root rot caused by Fusarium oxysporum. Li XJ; Yao CX; Qiu R; Bai JK; Liu C; Chen YG; Li SJ J Appl Microbiol; 2023 Jan; 134(1):. PubMed ID: 36626796 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]