These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 32322609)

  • 61. Subject-specific finite element models implementing a maximum principal strain criterion are able to estimate failure risk and fracture location on human femurs tested in vitro.
    Schileo E; Taddei F; Cristofolini L; Viceconti M
    J Biomech; 2008; 41(2):356-67. PubMed ID: 18022179
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Establishment of an architecture-specific experimental validation approach for finite element modeling of bone by rapid prototyping and high resolution computed tomography.
    Su R; Campbell GM; Boyd SK
    Med Eng Phys; 2007 May; 29(4):480-90. PubMed ID: 16908211
    [TBL] [Abstract][Full Text] [Related]  

  • 63. FE and experimental study on how the cortex material properties of synthetic femurs affect strain levels.
    Lopes VMM; Neto MA; Amaro AM; Roseiro LM; Paulino MF
    Med Eng Phys; 2017 Aug; 46():96-109. PubMed ID: 28645848
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Linear and nonlinear analyses of femoral fractures: Computational/experimental study.
    Mirzaei M; Alavi F; Allaveisi F; Naeini V; Amiri P
    J Biomech; 2018 Oct; 79():155-163. PubMed ID: 30135015
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Subject specific finite element mesh generation of the pelvis from biplanar x-ray images: application to 120 clinical cases.
    Fougeron N; Rohan PY; Macron A; Travert C; Pillet H; Skalli W
    Comput Methods Biomech Biomed Engin; 2018 Apr; 21(5):408-412. PubMed ID: 29969279
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Finite element analyses of human vertebral bodies embedded in polymethylmethalcrylate or loaded via the hyperelastic intervertebral disc models provide equivalent predictions of experimental strength.
    Lu Y; Maquer G; Museyko O; Püschel K; Engelke K; Zysset P; Morlock M; Huber G
    J Biomech; 2014 Jul; 47(10):2512-6. PubMed ID: 24818795
    [TBL] [Abstract][Full Text] [Related]  

  • 67. A semi-automated method for hexahedral mesh construction of human vertebrae from CT scans.
    Dai Y; Niebur GL
    Comput Methods Biomech Biomed Engin; 2009 Oct; 12(5):599-606. PubMed ID: 19308870
    [TBL] [Abstract][Full Text] [Related]  

  • 68. A new approach to determine the accuracy of morphology-elasticity relationships in continuum FE analyses of human proximal femur.
    Hazrati Marangalou J; Ito K; van Rietbergen B
    J Biomech; 2012 Nov; 45(16):2884-92. PubMed ID: 23017379
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Accuracy of finite element predictions in sideways load configurations for the proximal human femur.
    Grassi L; Schileo E; Taddei F; Zani L; Juszczyk M; Cristofolini L; Viceconti M
    J Biomech; 2012 Jan; 45(2):394-9. PubMed ID: 22079387
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Investigation on distal femoral strength and reconstruction failure following curettage and cementation: In-vitro tests with finite element analyses.
    Ghouchani A; Rouhi G; Ebrahimzadeh MH
    Comput Biol Med; 2019 Sep; 112():103360. PubMed ID: 31330318
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Finite element prediction with experimental validation of damage distribution in single trabeculae during three-point bending tests.
    Ridha H; Thurner PJ
    J Mech Behav Biomed Mater; 2013 Nov; 27():94-106. PubMed ID: 23890577
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Micro-finite element simulation of trabecular-bone post-yield behaviour--effects of material model, element size and type.
    Verhulp E; Van Rietbergen B; Muller R; Huiskes R
    Comput Methods Biomech Biomed Engin; 2008 Aug; 11(4):389-95. PubMed ID: 18568833
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Prediction of strength and strain of the proximal femur by a CT-based finite element method.
    Bessho M; Ohnishi I; Matsuyama J; Matsumoto T; Imai K; Nakamura K
    J Biomech; 2007; 40(8):1745-53. PubMed ID: 17034798
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Prediction of the structural response of the femoral shaft under dynamic loading using subject-specific finite element models.
    Park G; Kim T; Forman J; Panzer MB; Crandall JR
    Comput Methods Biomech Biomed Engin; 2017 Aug; 20(11):1151-1166. PubMed ID: 28632407
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Accounting for spatial variation of trabecular anisotropy with subject-specific finite element modeling moderately improves predictions of local subchondral bone stiffness at the proximal tibia.
    Nazemi SM; Kalajahi SMH; Cooper DML; Kontulainen SA; Holdsworth DW; Masri BA; Wilson DR; Johnston JD
    J Biomech; 2017 Jul; 59():101-108. PubMed ID: 28601243
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Comparison of in situ and in vitro CT scan-based finite element model predictions of proximal femoral fracture load.
    Keyak JH; Falkinstein Y
    Med Eng Phys; 2003 Nov; 25(9):781-7. PubMed ID: 14519351
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Cancellous bone screw purchase: a comparison of synthetic femurs, human femurs, and finite element analysis.
    Zdero R; Olsen M; Bougherara H; Schemitsch EH
    Proc Inst Mech Eng H; 2008 Nov; 222(8):1175-83. PubMed ID: 19143412
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Patient-specific finite element analysis of femurs with cemented hip implants.
    Katz Y; Lubovsky O; Yosibash Z
    Clin Biomech (Bristol, Avon); 2018 Oct; 58():74-89. PubMed ID: 30053643
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Biofidelic finite element models for accurately classifying hip fracture in a retrospective clinical study of elderly women from the AGES Reykjavik cohort.
    Enns-Bray WS; Bahaloo H; Fleps I; Pauchard Y; Taghizadeh E; Sigurdsson S; Aspelund T; Büchler P; Harris T; Gudnason V; Ferguson SJ; Pálsson H; Helgason B
    Bone; 2019 Mar; 120():25-37. PubMed ID: 30240961
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Template-based finite-element mesh generation from medical images.
    Baghdadi L; Steinman DA; Ladak HM
    Comput Methods Programs Biomed; 2005 Jan; 77(1):11-21. PubMed ID: 15639706
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.