These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 32322634)

  • 21. Effects of natural shoe wear on traction performance: a longitudinal study.
    Hemler SL; Pliner EM; Redfern MS; Haight JM; Beschorner KE
    Footwear Sci; 2022; 14(1):1-12. PubMed ID: 37701063
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Validation of a portable shoe tread scanner to predict slip risk.
    Hemler SL; Beschorner KE
    J Safety Res; 2023 Sep; 86():5-11. PubMed ID: 37718069
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Technical note: The Next Step - a semi-automatic coding and comparison system for forensic footwear impressions.
    Daniel O; Levi A; Pertsev R; Issan Y; Pasternak Z; Cohen A
    Forensic Sci Int; 2022 Aug; 337():111378. PubMed ID: 35839684
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The interpretation of shoeprint comparison class correspondences.
    Hancock S; Morgan-Smith R; Buckleton J
    Sci Justice; 2012 Dec; 52(4):243-8. PubMed ID: 23068775
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Evaluation and comparison of the electrostatic dust print lifter and the electrostatic detection apparatus on the development of footwear impressions on paper.
    Craig CL; Hornsby BM; Riles M
    J Forensic Sci; 2006 Jul; 51(4):819-26. PubMed ID: 16882226
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Dataset of Digitized RACs and Their Rarity Score Analysis for Strengthening Shoeprint Evidence.
    Wiesner S; Shor Y; Tsach T; Kaplan-Damary N; Yekutieli Y
    J Forensic Sci; 2020 May; 65(3):762-774. PubMed ID: 31738459
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Survey of 1276 shoeprint impressions and development of an automatic shoeprint pattern matching facility.
    Hannigan TJ; Fleury LM; Reilly RB; O'Mullane BA; deChazal P
    Sci Justice; 2006; 46(2):79-89. PubMed ID: 17002210
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Method for measuring wear on boot outsoles using a 3D laser scanner.
    Whitson AE; Kocher LM; Pollard J; Nasarwanji M
    Footwear Sci; 2018; 10(3):149-155. PubMed ID: 30956751
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effects on traction of outsole composition and hardnesses of basketball shoes and three types of playing surfaces.
    Rheinstein DJ; Morehouse CA; Niebel BW
    Med Sci Sports; 1978; 10(4):282-8. PubMed ID: 750848
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Six different football shoes, one playing surface and the weather; Assessing variation in shoe-surface traction over one season of elite football.
    Thomson A; Whiteley R; Wilson M; Bleakley C
    PLoS One; 2019; 14(4):e0216364. PubMed ID: 31039209
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Shape measurement tools in footwear analysis: a statistical investigation of accidental characteristics over time.
    Sheets HD; Gross S; Langenburg G; Bush PJ; Bush MA
    Forensic Sci Int; 2013 Oct; 232(1-3):84-91. PubMed ID: 24053869
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Estimate of the random match frequency of acquired characteristics in a forensic footwear database.
    Smale AN; Speir JA
    Sci Justice; 2023 May; 63(3):427-437. PubMed ID: 37169469
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Athletic footwear: design, performance and selection issues.
    McPoil TG
    J Sci Med Sport; 2000 Sep; 3(3):260-7. PubMed ID: 11101265
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Determining Shoe Length from Partial Shoeprints.
    Zhang H; Liu L; Luo Y; Chang R
    J Forensic Sci; 2020 Nov; 65(6):2129-2137. PubMed ID: 32898298
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Novices cannot fill the examiners' shoes: Evidence of footwear examiners' expertise in shoe comparisons.
    Chapman R; Summersby S; Lang T; Raymond J; Ballantyne K
    Sci Justice; 2023 Sep; 63(5):598-611. PubMed ID: 37718007
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Dependence among randomly acquired characteristics on shoeprints and their features.
    Kaplan Damary N; Mandel M; Wiesner S; Yekutieli Y; Shor Y; Spiegelman C
    Forensic Sci Int; 2018 Feb; 283():173-179. PubMed ID: 29324348
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Importance of Footwear Outsole Rigidity in Improving Spatiotemporal Parameters in Patients with Diabetes and Previous Forefoot Ulcerations.
    López-Moral M; Molines-Barroso RJ; Álvaro-Afonso FJ; Uccioli L; Senneville E; Lázaro-Martínez JL
    J Clin Med; 2020 Mar; 9(4):. PubMed ID: 32218232
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Shoeprint image retrieval and crime scene shoeprint image linking by using convolutional neural network and normalized cross correlation.
    Wen Z; Curran JM; Wevers G
    Sci Justice; 2023 Jul; 63(4):439-450. PubMed ID: 37453775
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Reproducibility of Artificial Cut on Heel Area of Rubber Outsole.
    Liu L; Wu J; Luo Y; Lin S
    J Forensic Sci; 2020 Jan; 65(1):229-237. PubMed ID: 31393611
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Casting of 3-dimensional footwear prints in snow with foam blocks.
    Petraco N; Sherman H; Dumitra A; Roberts M
    Forensic Sci Int; 2016 Jun; 263():147-151. PubMed ID: 27124876
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.