These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 32322845)

  • 41. An inert 3D emulsification device for individual precipitation and concentration of amorphous drug nanoparticles.
    Lorenz T; Bojko S; Bunjes H; Dietzel A
    Lab Chip; 2018 Feb; 18(4):627-638. PubMed ID: 29345261
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Three-dimensional ordered macroporous magnetic photonic crystal microspheres for enrichment and detection of mycotoxins (I): Droplet-based microfluidic self-assembly synthesis.
    Zhuo S; Liu Y; Li W; Ding Z; Li M; Li Q; Wang X; Liu J; Shao R; Ling Q; Zheng T; Li J
    J Chromatogr A; 2020 Aug; 1626():461379. PubMed ID: 32797854
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Microfluidic generation of aqueous two-phase-system (ATPS) droplets by oil-droplet choppers.
    Zhou C; Zhu P; Tian Y; Tang X; Shi R; Wang L
    Lab Chip; 2017 Sep; 17(19):3310-3317. PubMed ID: 28861566
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Oscillating dispersed-phase co-flow microfluidic droplet generation: Multi-droplet size effect.
    Shams Khorrami A; Rezai P
    Biomicrofluidics; 2018 May; 12(3):034113. PubMed ID: 29983838
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Raw material variability of an active pharmaceutical ingredient and its relevance for processability in secondary continuous pharmaceutical manufacturing.
    Stauffer F; Vanhoorne V; Pilcer G; Chavez PF; Rome S; Schubert MA; Aerts L; De Beer T
    Eur J Pharm Biopharm; 2018 Jun; 127():92-103. PubMed ID: 29452241
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A Noncontact Picolitor Droplet Handling by Photothermal Control of Interfacial Flow.
    Muto M; Yamamoto M; Motosuke M
    Anal Sci; 2016; 32(1):49-55. PubMed ID: 26753705
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Strategy for Fast Decision on Material System Suitability for Continuous Crystallization Inside a Slug Flow Crystallizer.
    Kufner AC; Krummnow A; Danzer A; Wohlgemuth K
    Micromachines (Basel); 2022 Oct; 13(10):. PubMed ID: 36296148
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Design of microfluidic channel geometries for the control of droplet volume, chemical concentration, and sorting.
    Tan YC; Fisher JS; Lee AI; Cristini V; Lee AP
    Lab Chip; 2004 Aug; 4(4):292-8. PubMed ID: 15269794
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Formation of droplets of alternating composition in microfluidic channels and applications to indexing of concentrations in droplet-based assays.
    Zheng B; Tice JD; Ismagilov RF
    Anal Chem; 2004 Sep; 76(17):4977-82. PubMed ID: 15373431
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Droplet microfluidics with a nanoemulsion continuous phase.
    Gu T; Yeap EW; Somasundar A; Chen R; Hatton TA; Khan SA
    Lab Chip; 2016 Jul; 16(14):2694-700. PubMed ID: 27306833
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Effect of Intersection Angle of Input Channels in Droplet Generators.
    Kim GB; Park YR; Kim SJ; Park KH
    Molecules; 2022 Mar; 27(6):. PubMed ID: 35335156
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Crystallization of Active Emulsion.
    Kichatov B; Korshunov A; Sudakov V; Gubernov V; Yakovenko I; Kiverin A
    Langmuir; 2021 May; 37(18):5691-5698. PubMed ID: 33929856
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Engineering 3D parallelized microfluidic droplet generators with equal flow profiles by computational fluid dynamics and stereolithographic printing.
    Kamperman T; Teixeira LM; Salehi SS; Kerckhofs G; Guyot Y; Geven M; Geris L; Grijpma D; Blanquer S; Leijten J
    Lab Chip; 2020 Feb; 20(3):490-495. PubMed ID: 31841123
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Using a microfluidic chip and internal gelation reaction for monodisperse calcium alginate microparticles generation.
    Huang KS; Lai TH; Lin YC
    Front Biosci; 2007 May; 12():3061-7. PubMed ID: 17485282
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Design insights for upscaling spontaneous microfluidic emulsification devices based on behavior of the Upscaled Partitioned EDGE device.
    Ten Klooster S; Berton-Carabin C; Schroën K
    Food Res Int; 2023 Feb; 164():112365. PubMed ID: 36738018
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Microstructures and pharmaceutical properties of ferulic acid agglomerates prepared by different spherical crystallization methods.
    Chen H; Wang C; Kang H; Zhi B; Haynes CL; Aburub A; Sun CC
    Int J Pharm; 2020 Jan; 574():118914. PubMed ID: 31811924
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Advances in the Use of Microfluidics to Study Crystallization Fundamentals.
    Candoni N; Grossier R; Lagaize M; Veesler S
    Annu Rev Chem Biomol Eng; 2019 Jun; 10():59-83. PubMed ID: 31018097
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Microporous Polymer Particles via Phase Inversion in Microfluidics: Impact of Nonsolvent Quality.
    Udoh CE; Garbin V; Cabral JT
    Langmuir; 2016 Aug; 32(32):8131-40. PubMed ID: 27448632
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Droplet coalescence and phase separation in a topical ointment: Effects of fluid shear and temperature.
    Haghighat AK; Olsen MG; Vigil RD; Sarkar A
    Int J Pharm; 2020 Dec; 591():119872. PubMed ID: 33065222
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Process intensification of atorvastatin calcium crystallization for target polymorph development via continuous combined cooling and antisolvent crystallization using an oscillatory baffled crystallizer.
    Kshirsagar S; Lakshmi Ramana Susarla N; Ramakrishnan S; Nagy ZK
    Int J Pharm; 2022 Nov; 627():122172. PubMed ID: 36084877
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.