These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
168 related articles for article (PubMed ID: 32322946)
1. High-level production of industrially relevant oxidases by a two-stage fed-batch approach: overcoming catabolite repression in arabinose-inducible Escherichia coli systems. Román R; Lončar N; Casablancas A; Fraaije MW; Gonzalez G Appl Microbiol Biotechnol; 2020 Jun; 104(12):5337-5345. PubMed ID: 32322946 [TBL] [Abstract][Full Text] [Related]
2. High yield production of the latex clearing protein from Gordonia polyisoprenivorans VH2 in fed batch fermentations using a recombinant strain of Escherichia coli. Altenhoff AL; Thierbach S; Steinbüchel A J Biotechnol; 2020 Feb; 309():92-99. PubMed ID: 31881242 [TBL] [Abstract][Full Text] [Related]
3. Introducing substrate limitations to overcome catabolite repression in a protease producing Bacillus licheniformis strain using membrane-based fed-batch shake flasks. Habicher T; John A; Scholl N; Daub A; Klein T; Philip P; Büchs J Biotechnol Bioeng; 2019 Jun; 116(6):1326-1340. PubMed ID: 30712275 [TBL] [Abstract][Full Text] [Related]
4. Simultaneous uptake of lignocellulose-based monosaccharides by Escherichia coli. Jarmander J; Hallström BM; Larsson G Biotechnol Bioeng; 2014 Jun; 111(6):1108-15. PubMed ID: 24382675 [TBL] [Abstract][Full Text] [Related]
5. A cell engineering approach to enzyme-based fed-batch fermentation. Sibley M; Ward JM Microb Cell Fact; 2021 Jul; 20(1):146. PubMed ID: 34303374 [TBL] [Abstract][Full Text] [Related]
6. Multi-stage high cell continuous fermentation for high productivity and titer. Chang HN; Kim NJ; Kang J; Jeong CM; Choi JD; Fei Q; Kim BJ; Kwon S; Lee SY; Kim J Bioprocess Biosyst Eng; 2011 May; 34(4):419-31. PubMed ID: 21127908 [TBL] [Abstract][Full Text] [Related]
7. Lipid production in batch and fed-batch cultures of Rhodosporidium toruloides from 5 and 6 carbon carbohydrates. Wiebe MG; Koivuranta K; Penttilä M; Ruohonen L BMC Biotechnol; 2012 May; 12():26. PubMed ID: 22646156 [TBL] [Abstract][Full Text] [Related]
8. Optimized fed-batch fermentation of Scheffersomyces stipitis for efficient production of ethanol from hexoses and pentoses. Unrean P; Nguyen NH Appl Biochem Biotechnol; 2013 Mar; 169(6):1895-909. PubMed ID: 23344940 [TBL] [Abstract][Full Text] [Related]
9. Temperature gradient-based high-cell density fed-batch fermentation for the production of pyruvate oxidase by recombinant E. coli. Liang J; Zhao J; Wang Z; Wang Y Prep Biochem Biotechnol; 2018 Feb; 48(2):188-193. PubMed ID: 29355461 [TBL] [Abstract][Full Text] [Related]
10. Enhanced Natamycin production by Streptomyces natalensis in shake-flasks and stirred tank bioreactor under batch and fed-batch conditions. Elsayed EA; Farid MA; El-Enshasy HA BMC Biotechnol; 2019 Jul; 19(1):46. PubMed ID: 31311527 [TBL] [Abstract][Full Text] [Related]
11. Production of a platelet aggregation inhibitor, salmosin, by high cell density fermentation of recombinant Escherichia coli. Seo MJ; Choi HJ; Chung KH; Pyun YR J Microbiol Biotechnol; 2011 Oct; 21(10):1053-6. PubMed ID: 22031030 [TBL] [Abstract][Full Text] [Related]
12. Hyperinducibility as a result of mutation in structural genes and self-catabolite repression in the ara operon. Katz L; Englesberg E J Bacteriol; 1971 Jul; 107(1):34-52. PubMed ID: 4327512 [TBL] [Abstract][Full Text] [Related]
13. High-level fed-batch fermentative expression of an engineered Staphylococcal protein A based ligand in E. coli: purification and characterization. Kangwa M; Yelemane V; Polat AN; Gorrepati KD; Grasselli M; Fernández-Lahore M AMB Express; 2015 Dec; 5(1):70. PubMed ID: 26556030 [TBL] [Abstract][Full Text] [Related]
14. Parallel substrate supply and pH stabilization for optimal screening of E. coli with the membrane-based fed-batch shake flask. Philip P; Kern D; Goldmanns J; Seiler F; Schulte A; Habicher T; Büchs J Microb Cell Fact; 2018 May; 17(1):69. PubMed ID: 29743073 [TBL] [Abstract][Full Text] [Related]
15. An optimized fed-batch culture strategy integrated with a one-step fermentation improves L-lactic acid production by Rhizopus oryzae. Fu Y; Sun X; Zhu H; Jiang R; Luo X; Yin L World J Microbiol Biotechnol; 2018 May; 34(6):74. PubMed ID: 29786118 [TBL] [Abstract][Full Text] [Related]
16. Improved productivity of poly (4-hydroxybutyrate) (P4HB) in recombinant Escherichia coli using glycerol as the growth substrate with fed-batch culture. Le Meur S; Zinn M; Egli T; Thöny-Meyer L; Ren Q Microb Cell Fact; 2014 Aug; 13():131. PubMed ID: 25176327 [TBL] [Abstract][Full Text] [Related]
17. High level extracellular production of recombinant γ-glutamyl transpeptidase from Bacillus licheniformis in Escherichia coli fed-batch culture. Bindal S; Dagar VK; Saini M; Khasa YP; Gupta R Enzyme Microb Technol; 2018 Sep; 116():23-32. PubMed ID: 29887013 [TBL] [Abstract][Full Text] [Related]
18. Stringent regulation and high-level expression of heterologous genes in Escherichia coli using T7 system controllable by the araBAD promoter. Chao YP; Chiang CJ; Hung WB Biotechnol Prog; 2002; 18(2):394-400. PubMed ID: 11934312 [TBL] [Abstract][Full Text] [Related]
19. Efficient butanol production without carbon catabolite repression from mixed sugars with Clostridium saccharoperbutylacetonicum N1-4. Noguchi T; Tashiro Y; Yoshida T; Zheng J; Sakai K; Sonomoto K J Biosci Bioeng; 2013 Dec; 116(6):716-21. PubMed ID: 23809630 [TBL] [Abstract][Full Text] [Related]