BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 32323196)

  • 21. Transcriptomic, Protein-DNA Interaction, and Metabolomic Studies of VosA, VelB, and WetA in Aspergillus nidulans Asexual Spores.
    Wu MY; Mead ME; Lee MK; Neuhaus GF; Adpressa DA; Martien JI; Son YE; Moon H; Amador-Noguez D; Han KH; Rokas A; Loesgen S; Yu JH; Park HS
    mBio; 2021 Feb; 12(1):. PubMed ID: 33563821
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Distinct amino acids of histone H3 control secondary metabolism in Aspergillus nidulans.
    Nützmann HW; Fischer J; Scherlach K; Hertweck C; Brakhage AA
    Appl Environ Microbiol; 2013 Oct; 79(19):6102-9. PubMed ID: 23892751
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Revitalization of a Forward Genetic Screen Identifies Three New Regulators of Fungal Secondary Metabolism in the Genus
    Pfannenstiel BT; Zhao X; Wortman J; Wiemann P; Throckmorton K; Spraker JE; Soukup AA; Luo X; Lindner DL; Lim FY; Knox BP; Haas B; Fischer GJ; Choera T; Butchko RAE; Bok JW; Affeldt KJ; Keller NP; Palmer JM
    mBio; 2017 Sep; 8(5):. PubMed ID: 28874473
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Survival factor SvfA plays multiple roles in differentiation and is essential for completion of sexual development in Aspergillus nidulans.
    Lim JY; Kang EH; Park YH; Kook JH; Park HM
    Sci Rep; 2020 Mar; 10(1):5586. PubMed ID: 32221392
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The velvet-activated putative C
    Zhao Y; Lee MK; Lim J; Moon H; Park HS; Zheng W; Yu JH
    Fungal Biol; 2022; 126(6-7):421-428. PubMed ID: 35667829
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Deletion of the Aspergillus flavus orthologue of A. nidulans fluG reduces conidiation and promotes production of sclerotia but does not abolish aflatoxin biosynthesis.
    Chang PK; Scharfenstein LL; Mack B; Ehrlich KC
    Appl Environ Microbiol; 2012 Nov; 78(21):7557-63. PubMed ID: 22904054
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Gβ-like CpcB plays a crucial role for growth and development of Aspergillus nidulans and Aspergillus fumigatus.
    Kong Q; Wang L; Liu Z; Kwon NJ; Kim SC; Yu JH
    PLoS One; 2013; 8(7):e70355. PubMed ID: 23936193
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Negative regulation and developmental competence in Aspergillus.
    Lee MK; Kwon NJ; Lee IS; Jung S; Kim SC; Yu JH
    Sci Rep; 2016 Jul; 6():28874. PubMed ID: 27364479
    [TBL] [Abstract][Full Text] [Related]  

  • 29. VelC positively controls sexual development in Aspergillus nidulans.
    Park HS; Nam TY; Han KH; Kim SC; Yu JH
    PLoS One; 2014; 9(2):e89883. PubMed ID: 24587098
    [TBL] [Abstract][Full Text] [Related]  

  • 30. FlbC is a putative nuclear C2H2 transcription factor regulating development in Aspergillus nidulans.
    Kwon NJ; Garzia A; Espeso EA; Ugalde U; Yu JH
    Mol Microbiol; 2010 Sep; 77(5):1203-19. PubMed ID: 20624219
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Aspergillus nidulans natural product biosynthesis is regulated by mpkB, a putative pheromone response mitogen-activated protein kinase.
    Atoui A; Bao D; Kaur N; Grayburn WS; Calvo AM
    Appl Environ Microbiol; 2008 Jun; 74(11):3596-600. PubMed ID: 18378656
    [TBL] [Abstract][Full Text] [Related]  

  • 32. UrdA Controls Secondary Metabolite Production and the Balance between Asexual and Sexual Development in
    Pandit SS; Lohmar JM; Ahmed S; Etxebeste O; Espeso EA; Calvo AM
    Genes (Basel); 2018 Nov; 9(12):. PubMed ID: 30477161
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Diversity of Secondary Metabolism in Aspergillus nidulans Clinical Isolates.
    Drott MT; Bastos RW; Rokas A; Ries LNA; Gabaldón T; Goldman GH; Keller NP; Greco C
    mSphere; 2020 Apr; 5(2):. PubMed ID: 32269157
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Changes of global gene expression and secondary metabolite accumulation during light-dependent Aspergillus nidulans development.
    Bayram Ö; Feussner K; Dumkow M; Herrfurth C; Feussner I; Braus GH
    Fungal Genet Biol; 2016 Feb; 87():30-53. PubMed ID: 26773375
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Accurate prediction of the Aspergillus nidulans terrequinone gene cluster boundaries using the transcriptional regulator LaeA.
    Bouhired S; Weber M; Kempf-Sontag A; Keller NP; Hoffmeister D
    Fungal Genet Biol; 2007 Nov; 44(11):1134-45. PubMed ID: 17291795
    [TBL] [Abstract][Full Text] [Related]  

  • 36. FluG-dependent asexual development in Aspergillus nidulans occurs via derepression.
    Seo JA; Guan Y; Yu JH
    Genetics; 2006 Mar; 172(3):1535-44. PubMed ID: 16387865
    [TBL] [Abstract][Full Text] [Related]  

  • 37. cpsA regulates mycotoxin production, morphogenesis and cell wall biosynthesis in the fungus Aspergillus nidulans.
    Feng X; Ramamoorthy V; Pandit SS; Prieto A; Espeso EA; Calvo AM
    Mol Microbiol; 2017 Jul; 105(1):1-24. PubMed ID: 28370587
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Conservation of structure and function of the aflatoxin regulatory gene aflR from Aspergillus nidulans and A. flavus.
    Yu JH; Butchko RA; Fernandes M; Keller NP; Leonard TJ; Adams TH
    Curr Genet; 1996 May; 29(6):549-55. PubMed ID: 8662194
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Coordinate control of secondary metabolite production and asexual sporulation in Aspergillus nidulans.
    Adams TH; Yu JH
    Curr Opin Microbiol; 1998 Dec; 1(6):674-7. PubMed ID: 10066549
    [TBL] [Abstract][Full Text] [Related]  

  • 40. veA-dependent RNA-pol II transcription elongation factor-like protein, RtfA, is associated with secondary metabolism and morphological development in Aspergillus nidulans.
    Ramamoorthy V; Shantappa S; Dhingra S; Calvo AM
    Mol Microbiol; 2012 Aug; 85(4):795-814. PubMed ID: 22783880
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.