BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 32323212)

  • 1. Acoustic signal analysis of instrument-tissue interaction for minimally invasive interventions.
    Ostler D; Seibold M; Fuchtmann J; Samm N; Feussner H; Wilhelm D; Navab N
    Int J Comput Assist Radiol Surg; 2020 May; 15(5):771-779. PubMed ID: 32323212
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Texture differentiation using audio signal analysis with robotic interventional instruments.
    Chen CH; Sühn T; Kalmar M; Maldonado I; Wex C; Croner R; Boese A; Friebe M; Illanes A
    Comput Biol Med; 2019 Sep; 112():103370. PubMed ID: 31374348
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Shared control of a medical robot with haptic guidance.
    Xiong L; Chng CB; Chui CK; Yu P; Li Y
    Int J Comput Assist Radiol Surg; 2017 Jan; 12(1):137-147. PubMed ID: 27314590
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design of a new haptic device and experiments in minimally invasive surgical robot.
    Wang T; Pan B; Fu Y; Wang S; Ai Y
    Comput Assist Surg (Abingdon); 2017 Dec; 22(sup1):240-250. PubMed ID: 29072504
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An anthropomorphic design for a minimally invasive surgical system based on a survey of surgical technologies, techniques and training.
    Tzemanaki A; Walters P; Pipe AG; Melhuish C; Dogramadzi S
    Int J Med Robot; 2014 Sep; 10(3):368-78. PubMed ID: 24127331
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Wearable haptic interfaces for applications in gynecologic robotic surgery: a proof of concept in robotic myomectomy.
    Giannini A; Bianchi M; Doria D; Fani S; Caretto M; Bicchi A; Simoncini T
    J Robot Surg; 2019 Aug; 13(4):585-588. PubMed ID: 31062181
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluating tactile feedback in robotic surgery for potential clinical application using an animal model.
    Wottawa CR; Genovese B; Nowroozi BN; Hart SD; Bisley JW; Grundfest WS; Dutson EP
    Surg Endosc; 2016 Aug; 30(8):3198-209. PubMed ID: 26514132
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Vibro-Acoustic Sensing of Instrument Interactions as a Potential Source of Texture-Related Information in Robotic Palpation.
    Sühn T; Esmaeili N; Mattepu SY; Spiller M; Boese A; Urrutia R; Poblete V; Hansen C; Lohmann CH; Illanes A; Friebe M
    Sensors (Basel); 2023 Mar; 23(6):. PubMed ID: 36991854
    [TBL] [Abstract][Full Text] [Related]  

  • 9. System design and animal experiment study of a novel minimally invasive surgical robot.
    Wang W; Li J; Wang S; Su H; Jiang X
    Int J Med Robot; 2016 Mar; 12(1):73-84. PubMed ID: 25914384
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A fuzzy neural network sliding mode controller for vibration suppression in robotically assisted minimally invasive surgery.
    Sang H; Yang C; Liu F; Yun J; Jin G
    Int J Med Robot; 2016 Dec; 12(4):670-679. PubMed ID: 27921372
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Force-Feedback Methodology for Teleoperated Suturing Task in Robotic-Assisted Minimally Invasive Surgery.
    Ehrampoosh A; Shirinzadeh B; Pinskier J; Smith J; Moshinsky R; Zhong Y
    Sensors (Basel); 2022 Oct; 22(20):. PubMed ID: 36298180
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Investigating haptic distance-to-break using linear and nonlinear materials in a simulated minimally invasive surgery task.
    Hartman LS; Kil I; Pagano CC; Burg T
    Ergonomics; 2016 Sep; 59(9):1171-81. PubMed ID: 26646857
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An Automated Skill Assessment Framework Based on Visual Motion Signals and a Deep Neural Network in Robot-Assisted Minimally Invasive Surgery.
    Pan M; Wang S; Li J; Li J; Yang X; Liang K
    Sensors (Basel); 2023 May; 23(9):. PubMed ID: 37177699
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Precise application of Traditional Chinese Medicine in minimally-invasive techniques].
    Dong FH
    Zhongguo Gu Shang; 2018 Jun; 31(6):493-496. PubMed ID: 29945400
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Motion modelling and error compensation of a cable-driven continuum robot for applications to minimally invasive surgery.
    Qi F; Ju F; Bai D; Wang Y; Chen B
    Int J Med Robot; 2018 Dec; 14(6):e1932. PubMed ID: 30003671
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Surgeons and non-surgeons prefer haptic feedback of instrument vibrations during robotic surgery.
    Koehn JK; Kuchenbecker KJ
    Surg Endosc; 2015 Oct; 29(10):2970-83. PubMed ID: 25539693
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pneumatic-type surgical robot end-effector for laparoscopic surgical-operation-by-wire.
    Lee C; Park WJ; Kim M; Noh S; Yoon C; Lee C; Kim Y; Kim HH; Kim HC; Kim S
    Biomed Eng Online; 2014 Sep; 13():130. PubMed ID: 25189221
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Endoscopic Image-Based Skill Assessment in Robot-Assisted Minimally Invasive Surgery.
    Lajkó G; Nagyné Elek R; Haidegger T
    Sensors (Basel); 2021 Aug; 21(16):. PubMed ID: 34450854
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Development of Augmented Reality to Enhance Minimally Invasive Surgery.
    Dodd K; Brooks NP
    Surg Technol Int; 2017 Dec; 31():19-24. PubMed ID: 29301165
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Convolutional neural network-based surgical instrument detection.
    Cai T; Zhao Z
    Technol Health Care; 2020; 28(S1):81-88. PubMed ID: 32333566
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.