These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 32323491)

  • 1. A Double-Layered Microneedle Platform Fabricated through Frozen Spray-Coating.
    Ning X; Wiraja C; Lio DCS; Xu C
    Adv Healthc Mater; 2020 May; 9(10):e2000147. PubMed ID: 32323491
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fabrication of coated polymer microneedles for transdermal drug delivery.
    Chen Y; Chen BZ; Wang QL; Jin X; Guo XD
    J Control Release; 2017 Nov; 265():14-21. PubMed ID: 28344014
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Formulation of hydrophobic peptides for skin delivery via coated microneedles.
    Zhao X; Coulman SA; Hanna SJ; Wong FS; Dayan CM; Birchall JC
    J Control Release; 2017 Nov; 265():2-13. PubMed ID: 28286315
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fabrication of novel-shaped microneedles to overcome the disadvantages of solid microneedles for the transdermal delivery of insulin.
    Mizuno Y; Takasawa K; Hanada T; Nakamura K; Yamada K; Tsubaki H; Hara M; Tashiro Y; Matsuo M; Ito T; Hikima T
    Biomed Microdevices; 2021 Jul; 23(3):38. PubMed ID: 34287717
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spatially controlled coating of continuous liquid interface production microneedles for transdermal protein delivery.
    Caudill CL; Perry JL; Tian S; Luft JC; DeSimone JM
    J Control Release; 2018 Aug; 284():122-132. PubMed ID: 29894710
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Insulin delivery systems combined with microneedle technology.
    Jin X; Zhu DD; Chen BZ; Ashfaq M; Guo XD
    Adv Drug Deliv Rev; 2018 Mar; 127():119-137. PubMed ID: 29604374
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A self-adherent, bullet-shaped microneedle patch for controlled transdermal delivery of insulin.
    Seong KY; Seo MS; Hwang DY; O'Cearbhaill ED; Sreenan S; Karp JM; Yang SY
    J Control Release; 2017 Nov; 265():48-56. PubMed ID: 28344013
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The development and characteristics of novel microneedle arrays fabricated from hyaluronic acid, and their application in the transdermal delivery of insulin.
    Liu S; Jin MN; Quan YS; Kamiyama F; Katsumi H; Sakane T; Yamamoto A
    J Control Release; 2012 Aug; 161(3):933-41. PubMed ID: 22634072
    [TBL] [Abstract][Full Text] [Related]  

  • 9.
    Tort S; Mutlu Agardan NB; Han D; Steckl AJ
    J Microencapsul; 2020 Nov; 37(7):517-527. PubMed ID: 32783663
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Individually coated microneedles for co-delivery of multiple compounds with different properties.
    Li S; Li W; Prausnitz M
    Drug Deliv Transl Res; 2018 Oct; 8(5):1043-1052. PubMed ID: 29948917
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microneedle-based drug delivery systems for transdermal route.
    Pierre MB; Rossetti FC
    Curr Drug Targets; 2014 Mar; 15(3):281-91. PubMed ID: 24144208
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Protection of Nanostructures-Integrated Microneedle Biosensor Using Dissolvable Polymer Coating.
    Liu F; Lin Z; Jin Q; Wu Q; Yang C; Chen HJ; Cao Z; Lin DA; Zhou L; Hang T; He G; Xu Y; Xia W; Tao J; Xie X
    ACS Appl Mater Interfaces; 2019 Feb; 11(5):4809-4819. PubMed ID: 30628778
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rapidly separating microneedles for transdermal drug delivery.
    Zhu DD; Wang QL; Liu XB; Guo XD
    Acta Biomater; 2016 Sep; 41():312-9. PubMed ID: 27265152
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Polymer microneedles fabricated from alginate and hyaluronate for transdermal delivery of insulin.
    Yu W; Jiang G; Zhang Y; Liu D; Xu B; Zhou J
    Mater Sci Eng C Mater Biol Appl; 2017 Nov; 80():187-196. PubMed ID: 28866156
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Preparation and evaluation of rapid disintegrating formulation from coated microneedle.
    Jin M; Jeon WJ; Lee H; Jung M; Kim HE; Yoo H; Won JH; Kim JC; Park JH; Yang MJ; Lee HK; Cho CW
    Drug Deliv Transl Res; 2022 Feb; 12(2):415-425. PubMed ID: 34494223
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fabrication of microporous inorganic microneedles by centrifugal casting method for transdermal extraction and delivery.
    Gholami S; Mohebi MM; Hajizadeh-Saffar E; Ghanian MH; Zarkesh I; Baharvand H
    Int J Pharm; 2019 Mar; 558():299-310. PubMed ID: 30654056
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design, fabrication, and characterisation of a silicon microneedle array for transdermal therapeutic delivery using a single step wet etch process.
    Howells O; Blayney GJ; Gualeni B; Birchall JC; Eng PF; Ashraf H; Sharma S; Guy OJ
    Eur J Pharm Biopharm; 2022 Feb; 171():19-28. PubMed ID: 34144128
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Coating formulations for microneedles.
    Gill HS; Prausnitz MR
    Pharm Res; 2007 Jul; 24(7):1369-80. PubMed ID: 17385011
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microneedles for transdermal drug delivery.
    Prausnitz MR
    Adv Drug Deliv Rev; 2004 Mar; 56(5):581-7. PubMed ID: 15019747
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enzyme-mediated fabrication of nanocomposite hydrogel microneedles for tunable mechanical strength and controllable transdermal efficiency.
    Chi Y; Zheng Y; Pan X; Huang Y; Kang Y; Zhong W; Xu K
    Acta Biomater; 2024 Jan; 174():127-140. PubMed ID: 38042262
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.