BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

286 related articles for article (PubMed ID: 32323816)

  • 1. Application of weighted gene co‑expression network analysis to explore the potential diagnostic biomarkers for colorectal cancer.
    Qin L; Zeng J; Shi N; Chen L; Wang L
    Mol Med Rep; 2020 Jun; 21(6):2533-2543. PubMed ID: 32323816
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identifying the key genes and microRNAs in colorectal cancer liver metastasis by bioinformatics analysis and in vitro experiments.
    Zhang T; Guo J; Gu J; Wang Z; Wang G; Li H; Wang J
    Oncol Rep; 2019 Jan; 41(1):279-291. PubMed ID: 30542696
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of key gene modules and genes in colorectal cancer by co-expression analysis weighted gene co-expression network analysis.
    Wang P; Zheng H; Zhang J; Wang Y; Liu P; Xuan X; Li Q; Du Y
    Biosci Rep; 2020 Sep; 40(9):. PubMed ID: 32815531
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of potential biomarkers with colorectal cancer based on bioinformatics analysis and machine learning.
    Hammad A; Elshaer M; Tang X
    Math Biosci Eng; 2021 Oct; 18(6):8997-9015. PubMed ID: 34814332
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Weighted gene co-expression network analysis combined with machine learning validation to identify key hub biomarkers in colorectal cancer.
    Guo C; Xie B; Liu Q
    Funct Integr Genomics; 2022 Dec; 23(1):24. PubMed ID: 36576616
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of hub genes in colorectal cancer based on weighted gene co-expression network analysis and clinical data from The Cancer Genome Atlas.
    Zhang Y; Luo J; Liu Z; Liu X; Ma Y; Zhang B; Chen Y; Li X; Feng Z; Yang N; Feng D; Wang L; Song X
    Biosci Rep; 2021 Jul; 41(7):. PubMed ID: 34308980
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of Hub Genes in Different Stages of Colorectal Cancer through an Integrated Bioinformatics Approach.
    Patil AR; Leung MY; Roy S
    Int J Environ Res Public Health; 2021 May; 18(11):. PubMed ID: 34070979
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of candidate biomarkers and therapeutic drugs of colorectal cancer by integrated bioinformatics analysis.
    Zheng Z; Xie J; Xiong L; Gao M; Qin L; Dai C; Liang Z; Wang Y; Xue J; Wang Q; Wang W; Li X
    Med Oncol; 2020 Oct; 37(11):104. PubMed ID: 33078282
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification Hub Genes in Colorectal Cancer by Integrating Weighted Gene Co-Expression Network Analysis and Clinical Validation
    Yuan Y; Chen J; Wang J; Xu M; Zhang Y; Sun P; Liang L
    Front Oncol; 2020; 10():638. PubMed ID: 32426282
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of potential hub genes via bioinformatics analysis combined with experimental verification in colorectal cancer.
    Zhou H; Yang Z; Yue J; Chen Y; Chen T; Mu T; Liu H; Bi X
    Mol Carcinog; 2020 Apr; 59(4):425-438. PubMed ID: 32064687
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hub Genes and Key Pathway Identification in Colorectal Cancer Based on Bioinformatic Analysis.
    Lv J; Li L
    Biomed Res Int; 2019; 2019():1545680. PubMed ID: 31781593
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The identification of a common different gene expression signature in patients with colorectal cancer.
    Zhao ZW; Fan XX; Yang LL; Song JJ; Fang SJ; Tu JF; Chen MJ; Zheng LY; Wu FZ; Zhang DK; Ying XH; Ji JS
    Math Biosci Eng; 2019 Apr; 16(4):2942-2958. PubMed ID: 31137244
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Delineating the underlying molecular mechanisms and key genes involved in metastasis of colorectal cancer via bioinformatics analysis.
    Qi C; Chen Y; Zhou Y; Huang X; Li G; Zeng J; Ruan Z; Xie X; Zhang J
    Oncol Rep; 2018 May; 39(5):2297-2305. PubMed ID: 29517105
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of biomarkers associated with diagnosis and prognosis of colorectal cancer patients based on integrated bioinformatics analysis.
    Chen L; Lu D; Sun K; Xu Y; Hu P; Li X; Xu F
    Gene; 2019 Apr; 692():119-125. PubMed ID: 30654001
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Coexpression network analysis linked H2AFJ to chemoradiation resistance in colorectal cancer.
    Wang X; Ghareeb WM; Lu X; Huang Y; Huang S; Chi P
    J Cell Biochem; 2019 Jun; 120(6):10351-10362. PubMed ID: 30565747
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Weighted gene coexpression analysis indicates that PLAGL2 and POFUT1 are related to the differential features of proximal and distal colorectal cancer.
    Lv Y; Xie B; Bai B; Shan L; Zheng W; Huang X; Zhu H
    Oncol Rep; 2019 Dec; 42(6):2473-2485. PubMed ID: 31638246
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of Genes Related to Clinicopathological Characteristics and Prognosis of Patients with Colorectal Cancer.
    Gao X; Yang J
    DNA Cell Biol; 2020 Apr; 39(4):690-699. PubMed ID: 32027181
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of Key Biomarkers and Potential Molecular Mechanisms in Oral Squamous Cell Carcinoma by Bioinformatics Analysis.
    Yang B; Dong K; Guo P; Guo P; Jie G; Zhang G; Li T
    J Comput Biol; 2020 Jan; 27(1):40-54. PubMed ID: 31424263
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Screening and Identification of Key Biomarkers in Inflammatory Breast Cancer Through Integrated Bioinformatic Analyses.
    Wu J; Lv Q; Huang H; Zhu M; Meng D
    Genet Test Mol Biomarkers; 2020 Aug; 24(8):484-491. PubMed ID: 32598242
    [No Abstract]   [Full Text] [Related]  

  • 20. Potential four‑miRNA signature associated with T stage and prognosis of patients with pancreatic ductal adenocarcinoma identified by co‑expression analysis.
    You L; Wang J; Zhang F; Zhang J; Tao H; Zheng X; Hu Y
    Mol Med Rep; 2019 Jan; 19(1):441-451. PubMed ID: 30483731
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.