These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
164 related articles for article (PubMed ID: 32324106)
41. Modeling Approach Influences Dynamics of a Vector-Borne Pathogen System. Shaw AK; Igoe M; Power AG; Bosque-Pérez NA; Peace A Bull Math Biol; 2019 Jun; 81(6):2011-2028. PubMed ID: 30903591 [TBL] [Abstract][Full Text] [Related]
42. Dynamics of a dengue disease transmission model with two-stage structure in the human population. Li-Martín A; Reyes-Carreto R; Vargas-De-León C Math Biosci Eng; 2023 Jan; 20(1):955-974. PubMed ID: 36650797 [TBL] [Abstract][Full Text] [Related]
43. Global properties of infectious disease models with nonlinear incidence. Korobeinikov A Bull Math Biol; 2007 Aug; 69(6):1871-86. PubMed ID: 17443392 [TBL] [Abstract][Full Text] [Related]
45. Global asymptotic properties of virus dynamics models with dose-dependent parasite reproduction and virulence and non-linear incidence rate. Korobeinikov A Math Med Biol; 2009 Sep; 26(3):225-39. PubMed ID: 19299417 [TBL] [Abstract][Full Text] [Related]
46. Comparison of time series and mechanistic models of vector-borne diseases. Vyhmeister E; Provan G; Doyle B; Bourke B; Castane GG; Reyes-Bozo L Spat Spatiotemporal Epidemiol; 2022 Jun; 41():100478. PubMed ID: 35691636 [TBL] [Abstract][Full Text] [Related]
47. Spatial dynamics of a viral infection model with immune response and nonlinear incidence. Zheng T; Luo Y; Teng Z Z Angew Math Phys; 2023; 74(3):124. PubMed ID: 37252013 [TBL] [Abstract][Full Text] [Related]
48. Plague disease model with weather seasonality. Ngeleja RC; Luboobi LS; Nkansah-Gyekye Y Math Biosci; 2018 Aug; 302():80-99. PubMed ID: 29800562 [TBL] [Abstract][Full Text] [Related]
49. Viral infection dynamics with immune chemokines and CTL mobility modulated by the infected cell density. Shu H; Jin HY; Wang XS; Wu J J Math Biol; 2024 Mar; 88(4):43. PubMed ID: 38491217 [TBL] [Abstract][Full Text] [Related]
50. The control of vector-borne disease epidemics. Hosack GR; Rossignol PA; van den Driessche P J Theor Biol; 2008 Nov; 255(1):16-25. PubMed ID: 18706917 [TBL] [Abstract][Full Text] [Related]
51. The stability analysis of an SVEIR model with continuous age-structure in the exposed and infectious classes. Wang J; Zhang R; Kuniya T J Biol Dyn; 2015; 9():73-101. PubMed ID: 25689314 [TBL] [Abstract][Full Text] [Related]
52. The basic reproduction number of vector-borne plant virus epidemics. Van den Bosch F; Jeger MJ Virus Res; 2017 Sep; 241():196-202. PubMed ID: 28642061 [TBL] [Abstract][Full Text] [Related]
53. Global stability of a delayed and diffusive virus model with nonlinear infection function. Geng Y; Xu J J Biol Dyn; 2021 Dec; 15(1):287-307. PubMed ID: 33944680 [TBL] [Abstract][Full Text] [Related]
54. Transmission dynamics for vector-borne diseases in a patchy environment. Xiao Y; Zou X J Math Biol; 2014 Jul; 69(1):113-46. PubMed ID: 23732558 [TBL] [Abstract][Full Text] [Related]
55. Dynamics of a diffusive vaccination model with therapeutic impact and non-linear incidence in epidemiology. Kamrujjaman M; Shahriar Mahmud M; Islam MS J Biol Dyn; 2021 May; 15(sup1):S105-S133. PubMed ID: 33205697 [TBL] [Abstract][Full Text] [Related]
56. Assessing the potential impact of vector-borne disease transmission following heavy rainfall events: a mathematical framework. Chowell G; Mizumoto K; Banda JM; Poccia S; Perrings C Philos Trans R Soc Lond B Biol Sci; 2019 Jun; 374(1775):20180272. PubMed ID: 31056044 [TBL] [Abstract][Full Text] [Related]
57. Ross-Macdonald models: Which one should we use? Simoy MI; Aparicio JP Acta Trop; 2020 Jul; 207():105452. PubMed ID: 32302688 [TBL] [Abstract][Full Text] [Related]
58. The effects of human movement on the persistence of vector-borne diseases. Cosner C; Beier JC; Cantrell RS; Impoinvil D; Kapitanski L; Potts MD; Troyo A; Ruan S J Theor Biol; 2009 Jun; 258(4):550-60. PubMed ID: 19265711 [TBL] [Abstract][Full Text] [Related]
59. Global stability properties of a class of renewal epidemic models. Meehan MT; Cocks DG; Müller J; McBryde ES J Math Biol; 2019 May; 78(6):1713-1725. PubMed ID: 30737545 [TBL] [Abstract][Full Text] [Related]
60. Global stability of an epidemic model with delay and general nonlinear incidence. McCluskey CC Math Biosci Eng; 2010 Oct; 7(4):837-50. PubMed ID: 21077711 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]