These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 32324547)

  • 1. Stress-Sensing Method via Laser-Generated Ultrasound Wave Using Candle Soot Nanoparticle Composite.
    Kim H; Chang WY; Kim T; Jiang X
    IEEE Trans Ultrason Ferroelectr Freq Control; 2020 Sep; 67(9):1867-1876. PubMed ID: 32324547
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Candle Soot Carbon Nanoparticles in Photoacoustics: Advantages and Challenges for Laser Ultrasound Transmitters.
    Kim J; Kim H; Chang WY; Huang W; Jiang X; Dayton PA
    IEEE Nanotechnol Mag; 2019 Jun; 13(3):13-28. PubMed ID: 31178946
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stress Measurement of a Pressurized Vessel Using Ultrasonic Subsurface Longitudinal Wave With 1-3 Composite Transducers.
    Kim H; Kim T; Morrow D; Jiang X
    IEEE Trans Ultrason Ferroelectr Freq Control; 2020 Jan; 67(1):158-166. PubMed ID: 31535989
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multipoint Energy-Balanced Laser-Ultrasonic Transducer Based on a Thin-Cladding Fiber.
    Zhou S; Zhou C; Tian J; Yao Y
    Sensors (Basel); 2024 Feb; 24(5):. PubMed ID: 38475027
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stretchable and Robust Candle-Soot Nanoparticle-Polydimethylsiloxane Composite Films for Laser-Ultrasound Transmitters.
    Faraz M; Abbasi MA; Sang P; Son D; Baac HW
    Micromachines (Basel); 2020 Jun; 11(7):. PubMed ID: 32605328
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Carbon nanofibers/liquid metal composites for high temperature laser ultrasound.
    Garcia N; Kim H; Vinod K; Sahoo A; Wax M; Kim T; Fang T; Narayanaswamy V; Wu H; Jiang X
    Ultrasonics; 2024 Mar; 138():107245. PubMed ID: 38232449
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Air-backed photoacoustic transmitter for significantly improving negative acoustic pressure output.
    Chen Y; Li Q; Zhu H; Wang Y; Zhang X; Yu H
    Opt Lett; 2021 Mar; 46(5):1149-1152. PubMed ID: 33649679
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Noninvasive liquid level sensing with laser generated ultrasonic waves.
    Kim H; Balagopal B; Kerrigan S; Garcia N; Chow MY; Bourham M; Fang T; Jiang X
    Ultrasonics; 2023 Apr; 130():106926. PubMed ID: 36682290
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultrathin materials for wide bandwidth laser ultrasound generation: titanium dioxide nanoparticle films with adsorbed dye.
    Pinto TB; Pinto SMA; Piedade AP; Serpa C
    Nanoscale Adv; 2023 Aug; 5(16):4191-4202. PubMed ID: 37560435
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Miniature fiber-optic high-intensity focused ultrasound device using a candle soot nanoparticles-polydimethylsiloxane composites-coated photoacoustic lens.
    Li Y; Guo Z; Li G; Chen SL
    Opt Express; 2018 Aug; 26(17):21700-21711. PubMed ID: 30130872
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exploring a photo-acousto-optic effect for noncontacting photoacoustic sensing.
    Yang BW; Chen HY; Huang YS; Chen HW; Yu HY; Yeh DC
    Appl Opt; 2014 Aug; 53(22):E47-50. PubMed ID: 25090353
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Versatile and scalable fabrication method for laser-generated focused ultrasound transducers.
    Aytac-Kipergil E; Alles EJ; Pauw HC; Karia J; Noimark S; Desjardins AE
    Opt Lett; 2019 Dec; 44(24):6005-6008. PubMed ID: 32628218
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Experiment and numerical simulation for laser ultrasonic measurement of residual stress.
    Zhan Y; Liu C; Kong X; Lin Z
    Ultrasonics; 2017 Jan; 73():271-276. PubMed ID: 27575300
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Laser-Generated Scholte Waves in Floating Microparticles.
    Ranjan A; Ahmad A; Ahluwalia BS; Melandsø F
    Sensors (Basel); 2023 Feb; 23(4):. PubMed ID: 36850374
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modeling photothermal and acoustical induced microbubble generation and growth.
    Krasovitski B; Kislev H; Kimmel E
    Ultrasonics; 2007 Dec; 47(1-4):90-101. PubMed ID: 17910969
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Numerical Methods for the Analysis of Power Transformer Tank Deformation and Rupture Due to Internal Arcing Faults.
    Yan C; Hao Z; Zhang S; Zhang B; Zheng T
    PLoS One; 2015; 10(7):e0133851. PubMed ID: 26230392
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A new point contact surface acoustic wave transducer for measurement of acoustoelastic effect of polymethylmethacrylate.
    Lee YC; Kuo SH
    IEEE Trans Ultrason Ferroelectr Freq Control; 2004 Jan; 51(1):114-20. PubMed ID: 14995022
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Focused Ultrasound Assistance to the MOS Gas Sensor System.
    Su S; Qi X; Liu P; Hu J
    IEEE Trans Ultrason Ferroelectr Freq Control; 2020 May; 67(5):1009-1016. PubMed ID: 31870982
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Investigation of thermo-acoustoelastic guided waves by semi-analytical finite element method.
    Yang Z; Liu K; Zhou K; Liang Y; Zhang J; Zheng Y; Gao D; Ma S; Wu Z
    Ultrasonics; 2020 Aug; 106():106141. PubMed ID: 32325302
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Study on effect of laser-induced ablation for Lamb waves in a thin plate.
    Lee SE; Liu P; Ko YW; Sohn H; Park B; Hong JW
    Ultrasonics; 2019 Jan; 91():121-128. PubMed ID: 30096537
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.