BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1115 related articles for article (PubMed ID: 32324588)

  • 1. Automatically Designing CNN Architectures Using the Genetic Algorithm for Image Classification.
    Sun Y; Xue B; Zhang M; Yen GG; Lv J
    IEEE Trans Cybern; 2020 Sep; 50(9):3840-3854. PubMed ID: 32324588
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Completely Automated CNN Architecture Design Based on Blocks.
    Sun Y; Xue B; Zhang M; Yen GG
    IEEE Trans Neural Netw Learn Syst; 2020 Apr; 31(4):1242-1254. PubMed ID: 31247572
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pulmonary Artery-Vein Classification in CT Images Using Deep Learning.
    Nardelli P; Jimenez-Carretero D; Bermejo-Pelaez D; Washko GR; Rahaghi FN; Ledesma-Carbayo MJ; San Jose Estepar R
    IEEE Trans Med Imaging; 2018 Nov; 37(11):2428-2440. PubMed ID: 29993996
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evolution of Deep Convolutional Neural Networks Using Cartesian Genetic Programming.
    Suganuma M; Kobayashi M; Shirakawa S; Nagao T
    Evol Comput; 2020; 28(1):141-163. PubMed ID: 30900927
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Designing optimal convolutional neural network architecture using differential evolution algorithm.
    Ghosh A; Jana ND; Mallik S; Zhao Z
    Patterns (N Y); 2022 Sep; 3(9):100567. PubMed ID: 36124301
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Orthogonal convolutional neural networks for automatic sleep stage classification based on single-channel EEG.
    Zhang J; Yao R; Ge W; Gao J
    Comput Methods Programs Biomed; 2020 Jan; 183():105089. PubMed ID: 31586788
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Human peripheral blood leukocyte classification method based on convolutional neural network and data augmentation.
    Wang Y; Cao Y
    Med Phys; 2020 Jan; 47(1):142-151. PubMed ID: 31691975
    [TBL] [Abstract][Full Text] [Related]  

  • 8. White blood cells detection and classification based on regional convolutional neural networks.
    Kutlu H; Avci E; Özyurt F
    Med Hypotheses; 2020 Feb; 135():109472. PubMed ID: 31760248
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deep Convolutional Neural Networks for Computer-Aided Detection: CNN Architectures, Dataset Characteristics and Transfer Learning.
    Shin HC; Roth HR; Gao M; Lu L; Xu Z; Nogues I; Yao J; Mollura D; Summers RM
    IEEE Trans Med Imaging; 2016 May; 35(5):1285-98. PubMed ID: 26886976
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transfer learning using a multi-scale and multi-network ensemble for skin lesion classification.
    Mahbod A; Schaefer G; Wang C; Dorffner G; Ecker R; Ellinger I
    Comput Methods Programs Biomed; 2020 Sep; 193():105475. PubMed ID: 32268255
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analyze COVID-19 CT images based on evolutionary algorithm with dynamic searching space.
    Gong Y; Sun Y; Peng D; Chen P; Yan Z; Yang K
    Complex Intell Systems; 2021; 7(6):3195-3209. PubMed ID: 34777977
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genetic U-Net: Automatically Designed Deep Networks for Retinal Vessel Segmentation Using a Genetic Algorithm.
    Wei J; Zhu G; Fan Z; Liu J; Rong Y; Mo J; Li W; Chen X
    IEEE Trans Med Imaging; 2022 Feb; 41(2):292-307. PubMed ID: 34506278
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A genetic programming-based convolutional deep learning algorithm for identifying COVID-19 cases via X-ray images.
    Najaran MHT
    Artif Intell Med; 2023 Aug; 142():102571. PubMed ID: 37316095
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Breast cancer histopathology image classification through assembling multiple compact CNNs.
    Zhu C; Song F; Wang Y; Dong H; Guo Y; Liu J
    BMC Med Inform Decis Mak; 2019 Oct; 19(1):198. PubMed ID: 31640686
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Scale-space approximated convolutional neural networks for retinal vessel segmentation.
    Noh KJ; Park SJ; Lee S
    Comput Methods Programs Biomed; 2019 Sep; 178():237-246. PubMed ID: 31416552
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Automatic MR image quality evaluation using a Deep CNN: A reference-free method to rate motion artifacts in neuroimaging.
    Fantini I; Yasuda C; Bento M; Rittner L; Cendes F; Lotufo R
    Comput Med Imaging Graph; 2021 Jun; 90():101897. PubMed ID: 33770561
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bone metastasis classification using whole body images from prostate cancer patients based on convolutional neural networks application.
    Papandrianos N; Papageorgiou E; Anagnostis A; Papageorgiou K
    PLoS One; 2020; 15(8):e0237213. PubMed ID: 32797099
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Large scale tissue histopathology image classification, segmentation, and visualization via deep convolutional activation features.
    Xu Y; Jia Z; Wang LB; Ai Y; Zhang F; Lai M; Chang EI
    BMC Bioinformatics; 2017 May; 18(1):281. PubMed ID: 28549410
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CNN-LRP: Understanding Convolutional Neural Networks Performance for Target Recognition in SAR Images.
    Zang B; Ding L; Feng Z; Zhu M; Lei T; Xing M; Zhou X
    Sensors (Basel); 2021 Jul; 21(13):. PubMed ID: 34283094
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Are All Deep Learning Architectures Alike for Point-of-Care Ultrasound?: Evidence From a Cardiac Image Classification Model Suggests Otherwise.
    Blaivas M; Blaivas L
    J Ultrasound Med; 2020 Jun; 39(6):1187-1194. PubMed ID: 31872477
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 56.