BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 32324659)

  • 1. State of the art in clinical decision support applications in pediatric perioperative medicine.
    Wang E; Brenn BR; Matava CT
    Curr Opin Anaesthesiol; 2020 Jun; 33(3):388-394. PubMed ID: 32324659
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Artificial intelligence-based clinical decision support in pediatrics.
    Ramgopal S; Sanchez-Pinto LN; Horvat CM; Carroll MS; Luo Y; Florin TA
    Pediatr Res; 2023 Jan; 93(2):334-341. PubMed ID: 35906317
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Perioperative intelligence: applications of artificial intelligence in perioperative medicine.
    Maheshwari K; Ruetzler K; Saugel B
    J Clin Monit Comput; 2020 Aug; 34(4):625-628. PubMed ID: 31468256
    [No Abstract]   [Full Text] [Related]  

  • 4. Utilizing big data from electronic health records in pediatric clinical care.
    Macias CG; Remy KE; Barda AJ
    Pediatr Res; 2023 Jan; 93(2):382-389. PubMed ID: 36434202
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Learning Healthcare Systems in Pediatrics: Cross-Institutional and Data-Driven Decision-Support for Intensive Care Environments (CADDIE).
    Wulff A; Marschollek M
    Stud Health Technol Inform; 2018; 251():109-112. PubMed ID: 29968614
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Machine learning in infection management using routine electronic health records: tools, techniques, and reporting of future technologies.
    Luz CF; Vollmer M; Decruyenaere J; Nijsten MW; Glasner C; Sinha B
    Clin Microbiol Infect; 2020 Oct; 26(10):1291-1299. PubMed ID: 32061798
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Applications of machine learning in clinical decision support in the omic era].
    Zhao XT; Yang YD; Qu HZ; Fang XD
    Yi Chuan; 2018 Sep; 40(9):693-703. PubMed ID: 30369474
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Beyond the Randomized Clinical Trial: Innovative Data Science to Close the Pediatric Evidence Gap.
    Goulooze SC; Zwep LB; Vogt JE; Krekels EHJ; Hankemeier T; van den Anker JN; Knibbe CAJ
    Clin Pharmacol Ther; 2020 Apr; 107(4):786-795. PubMed ID: 31863465
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Applying machine learning to continuously monitored physiological data.
    Rush B; Celi LA; Stone DJ
    J Clin Monit Comput; 2019 Oct; 33(5):887-893. PubMed ID: 30417258
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Artificial intelligence framework for simulating clinical decision-making: a Markov decision process approach.
    Bennett CC; Hauser K
    Artif Intell Med; 2013 Jan; 57(1):9-19. PubMed ID: 23287490
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Augmented intelligence in pediatric anesthesia and pediatric critical care.
    Görges M; Ansermino JM
    Curr Opin Anaesthesiol; 2020 Jun; 33(3):404-410. PubMed ID: 32324658
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Artificial Intelligence and Clinical Decision Support for Radiologists and Referring Providers.
    Bizzo BC; Almeida RR; Michalski MH; Alkasab TK
    J Am Coll Radiol; 2019 Sep; 16(9 Pt B):1351-1356. PubMed ID: 31492414
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pivotal challenges in artificial intelligence and machine learning applications for neonatal care.
    Jeong H; Kamaleswaran R
    Semin Fetal Neonatal Med; 2022 Oct; 27(5):101393. PubMed ID: 36266181
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Variance Reduction in Neurosurgical Practice: The Case for Analytics-Driven Decision Support in the Era of Big Data.
    Stopa BM; Yan SC; Dasenbrock HH; Kim DH; Gormley WB
    World Neurosurg; 2019 Jun; 126():e190-e195. PubMed ID: 30797905
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electronic health record with computerized decision support tools for the purposes of a pediatric cardiovascular heart disease screening program in Crete.
    Chatzakis I; Vassilakis K; Lionis C; Germanakis I
    Comput Methods Programs Biomed; 2018 Jun; 159():159-166. PubMed ID: 29650310
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Clinical Informatics and Quality Improvement in the Pediatric Intensive Care Unit.
    Daphtary K; Baloglu O
    Pediatr Clin North Am; 2022 Jun; 69(3):573-586. PubMed ID: 35667762
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Artificial intelligence and machine learning | applications in musculoskeletal physiotherapy.
    Tack C
    Musculoskelet Sci Pract; 2019 Feb; 39():164-169. PubMed ID: 30502096
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reporting and Implementing Interventions Involving Machine Learning and Artificial Intelligence.
    Bates DW; Auerbach A; Schulam P; Wright A; Saria S
    Ann Intern Med; 2020 Jun; 172(11 Suppl):S137-S144. PubMed ID: 32479180
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Artificial intelligence in perioperative medicine: a narrative review.
    Yoon HK; Yang HL; Jung CW; Lee HC
    Korean J Anesthesiol; 2022 Jun; 75(3):202-215. PubMed ID: 35345305
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Artificial intelligence-aided decision support in paediatrics clinical diagnosis: development and future prospects.
    Li Y; Zhang T; Yang Y; Gao Y
    J Int Med Res; 2020 Sep; 48(9):300060520945141. PubMed ID: 32924683
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.