BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

273 related articles for article (PubMed ID: 32325029)

  • 1. Bump-and-Hole Engineering Identifies Specific Substrates of Glycosyltransferases in Living Cells.
    Schumann B; Malaker SA; Wisnovsky SP; Debets MF; Agbay AJ; Fernandez D; Wagner LJS; Lin L; Li Z; Choi J; Fox DM; Peh J; Gray MA; Pedram K; Kohler JJ; Mrksich M; Bertozzi CR
    Mol Cell; 2020 Jun; 78(5):824-834.e15. PubMed ID: 32325029
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bump-and-hole engineering of human polypeptide N-acetylgalactosamine transferases to dissect their protein substrates and glycosylation sites in cells.
    Calle B; Gonzalez-Rodriguez E; Mahoney KE; Cioce A; Bineva-Todd G; Tastan OY; Roustan C; Flynn H; Malaker SA; Schumann B
    STAR Protoc; 2023 Mar; 4(1):101974. PubMed ID: 36633947
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Investigation of sequon engineering for improved O-glycosylation by the human polypeptide N-acetylgalactosaminyl transferase T2 isozyme and two orthologues.
    Thompson NK; LeClaire LTN; Rodriguez Perez S; Wakarchuk WW
    Biochem J; 2021 Oct; 478(19):3527-3537. PubMed ID: 34523671
    [TBL] [Abstract][Full Text] [Related]  

  • 4. How glycosylation affects glycosylation: the role of N-glycans in glycosyltransferase activity.
    Mikolajczyk K; Kaczmarek R; Czerwinski M
    Glycobiology; 2020 Dec; 30(12):941-969. PubMed ID: 32363402
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chemical approaches to perturb, profile, and perceive glycans.
    Agard NJ; Bertozzi CR
    Acc Chem Res; 2009 Jun; 42(6):788-97. PubMed ID: 19361192
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An Atlas of Human Glycosylation Pathways Enables Display of the Human Glycome by Gene Engineered Cells.
    Narimatsu Y; Joshi HJ; Nason R; Van Coillie J; Karlsson R; Sun L; Ye Z; Chen YH; Schjoldager KT; Steentoft C; Furukawa S; Bensing BA; Sullam PM; Thompson AJ; Paulson JC; Büll C; Adema GJ; Mandel U; Hansen L; Bennett EP; Varki A; Vakhrushev SY; Yang Z; Clausen H
    Mol Cell; 2019 Jul; 75(2):394-407.e5. PubMed ID: 31227230
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantitative assessment of successive carbohydrate additions to the clustered O-glycosylation sites of IgA1 by glycosyltransferases.
    Stewart TJ; Takahashi K; Xu N; Prakash A; Brown R; Raska M; Renfrow MB; Novak J
    Glycobiology; 2021 Jun; 31(5):540-556. PubMed ID: 33295603
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mucin-type O-glycosylation during development.
    Tran DT; Ten Hagen KG
    J Biol Chem; 2013 Mar; 288(10):6921-9. PubMed ID: 23329828
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Advances in cell surface glycoengineering reveal biological function.
    Nischan N; Kohler JJ
    Glycobiology; 2016 Aug; 26(8):789-96. PubMed ID: 27066802
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Generating orthogonal glycosyltransferase and nucleotide sugar pairs as next-generation glycobiology tools.
    Cioce A; Malaker SA; Schumann B
    Curr Opin Chem Biol; 2021 Feb; 60():66-78. PubMed ID: 33125942
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Insights into miRNA regulation of the human glycome.
    Kasper BT; Koppolu S; Mahal LK
    Biochem Biophys Res Commun; 2014 Mar; 445(4):774-9. PubMed ID: 24463102
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A cell-free biosynthesis platform for modular construction of protein glycosylation pathways.
    Kightlinger W; Duncker KE; Ramesh A; Thames AH; Natarajan A; Stark JC; Yang A; Lin L; Mrksich M; DeLisa MP; Jewett MC
    Nat Commun; 2019 Nov; 10(1):5404. PubMed ID: 31776339
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chemical reporters to study mammalian O-glycosylation.
    Huxley KE; Willems LI
    Biochem Soc Trans; 2021 Apr; 49(2):903-913. PubMed ID: 33860782
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Probing polypeptide GalNAc-transferase isoform substrate specificities by in vitro analysis.
    Kong Y; Joshi HJ; Schjoldager KT; Madsen TD; Gerken TA; Vester-Christensen MB; Wandall HH; Bennett EP; Levery SB; Vakhrushev SY; Clausen H
    Glycobiology; 2015 Jan; 25(1):55-65. PubMed ID: 25155433
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 3D Structure and Function of Glycosyltransferases Involved in
    Nagae M; Yamaguchi Y; Taniguchi N; Kizuka Y
    Int J Mol Sci; 2020 Jan; 21(2):. PubMed ID: 31936666
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biosynthetic incorporation for visualizing bacterial glycans.
    Marando VM; Kim DE; Kiessling LL
    Methods Enzymol; 2022; 665():135-151. PubMed ID: 35379432
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multiplexed engineering glycosyltransferase genes in CHO cells via targeted integration for producing antibodies with diverse complex-type N-glycans.
    Nguyen NTB; Lin J; Tay SJ; Mariati ; Yeo J; Nguyen-Khuong T; Yang Y
    Sci Rep; 2021 Jun; 11(1):12969. PubMed ID: 34155258
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Glycosylation pathways at the ocular surface.
    Rodriguez Benavente MC; Argüeso P
    Biochem Soc Trans; 2018 Apr; 46(2):343-350. PubMed ID: 29523772
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure-based evolutionary relationship of glycosyltransferases: a case study of vertebrate β1,4-galactosyltransferase, invertebrate β1,4-N-acetylgalactosaminyltransferase and α-polypeptidyl-N-acetylgalactosaminyltransferase.
    Ramakrishnan B; Qasba PK
    Curr Opin Struct Biol; 2010 Oct; 20(5):536-42. PubMed ID: 20705453
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Engineering Orthogonal Polypeptide GalNAc-Transferase and UDP-Sugar Pairs.
    Choi J; Wagner LJS; Timmermans SBPE; Malaker SA; Schumann B; Gray MA; Debets MF; Takashima M; Gehring J; Bertozzi CR
    J Am Chem Soc; 2019 Aug; 141(34):13442-13453. PubMed ID: 31373799
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.