These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
203 related articles for article (PubMed ID: 32325798)
1. Preparation and Characteristics of Wet-Spun Filament Made of Cellulose Nanofibrils with Different Chemical Compositions. Park CW; Park JS; Han SY; Lee EA; Kwon GJ; Seo YH; Gwon JG; Lee SY; Lee SH Polymers (Basel); 2020 Apr; 12(4):. PubMed ID: 32325798 [TBL] [Abstract][Full Text] [Related]
2. Preparation and Properties of Wet-Spun Microcomposite Filaments from Various CNFs and Alginate. Park JS; Park CW; Han SY; Lee EA; Cindradewi AW; Kim JK; Kwon GJ; Seo YH; Yoo WJ; Gwon JY; Lee SH Polymers (Basel); 2021 May; 13(11):. PubMed ID: 34073715 [TBL] [Abstract][Full Text] [Related]
3. Wet-Spun Composite Filaments from Lignocellulose Nanofibrils/Alginate and Their Physico-Mechanical Properties. Park JS; Han SY; Bandi R; Lee EA; Cindradewi AW; Kim JK; Kwon GJ; Seo YH; Youe WJ; Gwon J; Park CW; Lee SH Polymers (Basel); 2021 Sep; 13(17):. PubMed ID: 34503015 [TBL] [Abstract][Full Text] [Related]
4. Adsorption Characteristics of Ag Nanoparticles on Cellulose Nanofibrils with Different Chemical Compositions. Kwon GJ; Han SY; Park CW; Park JS; Lee EA; Kim NH; Alle M; Bandi R; Lee SH Polymers (Basel); 2020 Jan; 12(1):. PubMed ID: 31936376 [TBL] [Abstract][Full Text] [Related]
5. Strength and Water Interactions of Cellulose I Filaments Wet-Spun from Cellulose Nanofibril Hydrogels. Lundahl MJ; Cunha AG; Rojo E; Papageorgiou AC; Rautkari L; Arboleda JC; Rojas OJ Sci Rep; 2016 Jul; 6():30695. PubMed ID: 27465828 [TBL] [Abstract][Full Text] [Related]
6. Dry-Spun Neat Cellulose Nanofibril Filaments: Influence of Drying Temperature and Nanofibril Structure on Filament Properties. Ghasemi S; Tajvidi M; Bousfield DW; Gardner DJ; Gramlich WM Polymers (Basel); 2017 Aug; 9(9):. PubMed ID: 30965696 [TBL] [Abstract][Full Text] [Related]
7. Absorbent Filaments from Cellulose Nanofibril Hydrogels through Continuous Coaxial Wet Spinning. Lundahl MJ; Klar V; Ajdary R; Norberg N; Ago M; Cunha AG; Rojas OJ ACS Appl Mater Interfaces; 2018 Aug; 10(32):27287-27296. PubMed ID: 30014693 [TBL] [Abstract][Full Text] [Related]
8. Preparation and Characterization of Polybutylene Succinate Reinforced with Pure Cellulose Nanofibril and Lignocellulose Nanofibril Using Two-Step Process. Cindradewi AW; Bandi R; Park CW; Park JS; Lee EA; Kim JK; Kwon GJ; Han SY; Lee SH Polymers (Basel); 2021 Nov; 13(22):. PubMed ID: 34833243 [TBL] [Abstract][Full Text] [Related]
9. Cellulose and lignocellulose nanofibril suspensions and films: A comparison. Amini E; Hafez I; Tajvidi M; Bousfield DW Carbohydr Polym; 2020 Dec; 250():117011. PubMed ID: 33049872 [TBL] [Abstract][Full Text] [Related]
10. High-strength and functional nanocellulose filaments made by direct wet spinning from low concentration suspensions. Mao H; Niu P; Zhang Z; Kong Y; Wang WJ; Yang X Carbohydr Polym; 2023 Aug; 313():120881. PubMed ID: 37182934 [TBL] [Abstract][Full Text] [Related]
12. Changes in the Dimensions of Lignocellulose Nanofibrils with Different Lignin Contents by Enzymatic Hydrolysis. Jang JH; Hayashi N; Han SY; Park CW; Febrianto F; Lee SH; Kim NH Polymers (Basel); 2020 Sep; 12(10):. PubMed ID: 32992855 [TBL] [Abstract][Full Text] [Related]
13. Paper-Based Oil Barrier Packaging using Lignin-Containing Cellulose Nanofibrils. H Tayeb A; Tajvidi M; Bousfield D Molecules; 2020 Mar; 25(6):. PubMed ID: 32188070 [TBL] [Abstract][Full Text] [Related]
14. Structure and mechanical properties of wet-spun fibers made from natural cellulose nanofibers. Iwamoto S; Isogai A; Iwata T Biomacromolecules; 2011 Mar; 12(3):831-6. PubMed ID: 21302950 [TBL] [Abstract][Full Text] [Related]
15. Functional Bionanocomposite Fibers of Chitosan Filled with Cellulose Nanofibers Obtained by Gel Spinning. Marquez-Bravo S; Doench I; Molina P; Bentley FE; Tamo AK; Passieux R; Lossada F; David L; Osorio-Madrazo A Polymers (Basel); 2021 May; 13(10):. PubMed ID: 34068136 [TBL] [Abstract][Full Text] [Related]
16. Eco-Friendly Bioinspired Interface Design for High-Performance Cellulose Nanofibril/Carbon Nanotube Nanocomposites. Zhang C; Chen G; Wang X; Zhou S; Yu J; Feng X; Li L; Chen P; Qi H ACS Appl Mater Interfaces; 2020 Dec; 12(49):55527-55535. PubMed ID: 33236889 [TBL] [Abstract][Full Text] [Related]
17. Conductive Carbon Microfibers Derived from Wet-Spun Lignin/Nanocellulose Hydrogels. Wang L; Ago M; Borghei M; Ishaq A; Papageorgiou AC; Lundahl M; Rojas OJ ACS Sustain Chem Eng; 2019 Mar; 7(6):6013-6022. PubMed ID: 30931178 [TBL] [Abstract][Full Text] [Related]
18. High-Strength Regenerated Cellulose Fiber Reinforced with Cellulose Nanofibril and Nanosilica. Xue Y; Qi L; Lin Z; Yang G; He M; Chen J Nanomaterials (Basel); 2021 Oct; 11(10):. PubMed ID: 34685105 [TBL] [Abstract][Full Text] [Related]
19. Enzymatic pretreatment for the improvement of dispersion and film properties of cellulose nanofibrils. Nie S; Zhang K; Lin X; Zhang C; Yan D; Liang H; Wang S Carbohydr Polym; 2018 Feb; 181():1136-1142. PubMed ID: 29253942 [TBL] [Abstract][Full Text] [Related]
20. Effect of Cellulose Nanofibrils and TEMPO-mediated Oxidized Cellulose Nanofibrils on the Physical and Mechanical Properties of Poly(vinylidene fluoride)/Cellulose Nanofibril Composites. Barnes E; Jefcoat JA; Alberts EM; McKechnie MA; Peel HR; Buchanan JP; Weiss CA; Klaus KL; Mimun LC; Warner CM Polymers (Basel); 2019 Jun; 11(7):. PubMed ID: 31252644 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]