These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 32325814)

  • 21. A computer model of auditory efferent suppression: implications for the recognition of speech in noise.
    Brown GJ; Ferry RT; Meddis R
    J Acoust Soc Am; 2010 Feb; 127(2):943-54. PubMed ID: 20136217
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Joint Dictionary Learning-Based Non-Negative Matrix Factorization for Voice Conversion to Improve Speech Intelligibility After Oral Surgery.
    Fu SW; Li PC; Lai YH; Yang CC; Hsieh LC; Tsao Y
    IEEE Trans Biomed Eng; 2017 Nov; 64(11):2584-2594. PubMed ID: 28026747
    [No Abstract]   [Full Text] [Related]  

  • 23. μ-law SGAN for generating spectra with more details in speech enhancement.
    Li H; Xu Y; Ke D; Su K
    Neural Netw; 2021 Apr; 136():17-27. PubMed ID: 33422929
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Single-ended prediction of listening effort using deep neural networks.
    Huber R; Krüger M; Meyer BT
    Hear Res; 2018 Mar; 359():40-49. PubMed ID: 29373159
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Voice Command Recognition Using Biologically Inspired Time-Frequency Representation and Convolutional Neural Networks.
    Sharan RV; Berkovsky S; Liu S
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():998-1001. PubMed ID: 33018153
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Efficient Self-Attention Model for Speech Recognition-Based Assistive Robots Control.
    Poirier S; Côté-Allard U; Routhier F; Campeau-Lecours A
    Sensors (Basel); 2023 Jun; 23(13):. PubMed ID: 37447906
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Deep learning applications in telerehabilitation speech therapy scenarios.
    Mulfari D; La Placa D; Rovito C; Celesti A; Villari M
    Comput Biol Med; 2022 Sep; 148():105864. PubMed ID: 35853398
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Two-Step Joint Optimization with Auxiliary Loss Function for Noise-Robust Speech Recognition.
    Lee GW; Kim HK
    Sensors (Basel); 2022 Jul; 22(14):. PubMed ID: 35891070
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cluster-Based Pairwise Contrastive Loss for Noise-Robust Speech Recognition.
    Lee GW; Kim HK
    Sensors (Basel); 2024 Apr; 24(8):. PubMed ID: 38676191
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effect of speech-intrinsic variations on human and automatic recognition of spoken phonemes.
    Meyer BT; Brand T; Kollmeier B
    J Acoust Soc Am; 2011 Jan; 129(1):388-403. PubMed ID: 21303019
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Multiexpert automatic speech recognition using acoustic and myoelectric signals.
    Chan AD; Englehart KB; Hudgins B; Lovely DF
    IEEE Trans Biomed Eng; 2006 Apr; 53(4):676-85. PubMed ID: 16602574
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A Unified Framework for Multilingual Speech Recognition in Air Traffic Control Systems.
    Lin Y; Guo D; Zhang J; Chen Z; Yang B
    IEEE Trans Neural Netw Learn Syst; 2021 Aug; 32(8):3608-3620. PubMed ID: 32833649
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Deep bottleneck features for spoken language identification.
    Jiang B; Song Y; Wei S; Liu JH; McLoughlin IV; Dai LR
    PLoS One; 2014; 9(7):e100795. PubMed ID: 24983963
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Causal speech enhancement using dynamical-weighted loss and attention encoder-decoder recurrent neural network.
    Peracha FK; Khattak MI; Salem N; Saleem N
    PLoS One; 2023; 18(5):e0285629. PubMed ID: 37167227
    [TBL] [Abstract][Full Text] [Related]  

  • 35. One-against-all weighted dynamic time warping for language-independent and speaker-dependent speech recognition in adverse conditions.
    Zhang X; Sun J; Luo Z
    PLoS One; 2014; 9(2):e85458. PubMed ID: 24520317
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Relating dynamic brain states to dynamic machine states: Human and machine solutions to the speech recognition problem.
    Wingfield C; Su L; Liu X; Zhang C; Woodland P; Thwaites A; Fonteneau E; Marslen-Wilson WD
    PLoS Comput Biol; 2017 Sep; 13(9):e1005617. PubMed ID: 28945744
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Automatic speech recognition in cocktail-party situations: a specific training for separated speech.
    Marti A; Cobos M; Lopez JJ
    J Acoust Soc Am; 2012 Feb; 131(2):1529-35. PubMed ID: 22352522
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A model of speech recognition for hearing-impaired listeners based on deep learning.
    Roßbach J; Kollmeier B; Meyer BT
    J Acoust Soc Am; 2022 Mar; 151(3):1417. PubMed ID: 35364918
    [TBL] [Abstract][Full Text] [Related]  

  • 39. An effective cluster-based model for robust speech detection and speech recognition in noisy environments.
    Górriz JM; Ramírez J; Segura JC; Puntonet CG
    J Acoust Soc Am; 2006 Jul; 120(1):470-81. PubMed ID: 16875243
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Automated machine learning based speech classification for hearing aid applications and its real-time implementation on smartphone.
    Bhat GS; Shankar N; Panahi IMS
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():956-959. PubMed ID: 33018143
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.