These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 32325814)

  • 41. On training targets for deep learning approaches to clean speech magnitude spectrum estimation.
    Nicolson A; Paliwal KK
    J Acoust Soc Am; 2021 May; 149(5):3273. PubMed ID: 34241115
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Matrix sentence intelligibility prediction using an automatic speech recognition system.
    Schädler MR; Warzybok A; Hochmuth S; Kollmeier B
    Int J Audiol; 2015; 54 Suppl 2():100-7. PubMed ID: 26383042
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Single-ended prediction of listening effort using deep neural networks.
    Huber R; Krüger M; Meyer BT
    Hear Res; 2018 Mar; 359():40-49. PubMed ID: 29373159
    [TBL] [Abstract][Full Text] [Related]  

  • 44. An effective cluster-based model for robust speech detection and speech recognition in noisy environments.
    Górriz JM; Ramírez J; Segura JC; Puntonet CG
    J Acoust Soc Am; 2006 Jul; 120(1):470-81. PubMed ID: 16875243
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Mel frequency spectral domain defenses against adversarial attacks on speech recognition systems.
    Mehlman N; Sreeram A; Peri R; Narayanan S
    JASA Express Lett; 2023 Mar; 3(3):035208. PubMed ID: 37003705
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Automatic Speech Recognition Method Based on Deep Learning Approaches for Uzbek Language.
    Mukhamadiyev A; Khujayarov I; Djuraev O; Cho J
    Sensors (Basel); 2022 May; 22(10):. PubMed ID: 35632092
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Effect of speech-intrinsic variations on human and automatic recognition of spoken phonemes.
    Meyer BT; Brand T; Kollmeier B
    J Acoust Soc Am; 2011 Jan; 129(1):388-403. PubMed ID: 21303019
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A Hybrid Time-Distributed Deep Neural Architecture for Speech Emotion Recognition.
    De Lope J; Graña M
    Int J Neural Syst; 2022 Jun; 32(6):2250024. PubMed ID: 35575003
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Complete and Resilient Documentation for Operational Medical Environments Leveraging Mobile Hands-free Technology in a Systems Approach: Experimental Study.
    Woo M; Mishra P; Lin J; Kar S; Deas N; Linduff C; Niu S; Yang Y; McClendon J; Smith DH; Shelton SL; Gainey CE; Gerard WC; Smith MC; Griffin SF; Gimbel RW; Wang KC
    JMIR Mhealth Uhealth; 2021 Oct; 9(10):e32301. PubMed ID: 34636729
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Noise-robust voice conversion with domain adversarial training.
    Du H; Xie L; Li H
    Neural Netw; 2022 Apr; 148():74-84. PubMed ID: 35104714
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Voice Command Recognition Using Biologically Inspired Time-Frequency Representation and Convolutional Neural Networks.
    Sharan RV; Berkovsky S; Liu S
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():998-1001. PubMed ID: 33018153
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Automatic speech recognition in cocktail-party situations: a specific training for separated speech.
    Marti A; Cobos M; Lopez JJ
    J Acoust Soc Am; 2012 Feb; 131(2):1529-35. PubMed ID: 22352522
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Relating dynamic brain states to dynamic machine states: Human and machine solutions to the speech recognition problem.
    Wingfield C; Su L; Liu X; Zhang C; Woodland P; Thwaites A; Fonteneau E; Marslen-Wilson WD
    PLoS Comput Biol; 2017 Sep; 13(9):e1005617. PubMed ID: 28945744
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Auditory motivated front-end for noisy speech using spectro-temporal modulation filtering.
    Ganapathy S; Omar M
    J Acoust Soc Am; 2014 Nov; 136(5):EL343-9. PubMed ID: 25373991
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Cascaded Convolutional Neural Network Architecture for Speech Emotion Recognition in Noisy Conditions.
    Nam Y; Lee C
    Sensors (Basel); 2021 Jun; 21(13):. PubMed ID: 34199027
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Automated Speech Audiometry: Can It Work Using Open-Source Pre-Trained Kaldi-NL Automatic Speech Recognition?
    Araiza-Illan G; Meyer L; Truong KP; Başkent D
    Trends Hear; 2024; 28():23312165241229057. PubMed ID: 38483979
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Threshold-Based Noise Detection and Reduction for Automatic Speech Recognition System in Human-Robot Interactions.
    Lee SC; Wang JF; Chen MH
    Sensors (Basel); 2018 Jun; 18(7):. PubMed ID: 29958442
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Data augmentation for enhancing EEG-based emotion recognition with deep generative models.
    Luo Y; Zhu LZ; Wan ZY; Lu BL
    J Neural Eng; 2020 Oct; 17(5):056021. PubMed ID: 33052888
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Robust Understanding of Robot-Directed Speech Commands Using Sequence to Sequence With Noise Injection.
    Tada Y; Hagiwara Y; Tanaka H; Taniguchi T
    Front Robot AI; 2019; 6():144. PubMed ID: 33501159
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Machine Learning Methods for Automatic Silent Speech Recognition Using a Wearable Graphene Strain Gauge Sensor.
    Ravenscroft D; Prattis I; Kandukuri T; Samad YA; Mallia G; Occhipinti LG
    Sensors (Basel); 2021 Dec; 22(1):. PubMed ID: 35009845
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.