These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 32325954)

  • 21. Impedance measurement of non-locally reactive samples and the influence of the assumption of local reaction.
    Brandão E; Mareze P; Lenzi A; da Silva AR
    J Acoust Soc Am; 2013 May; 133(5):2722-31. PubMed ID: 23654380
    [TBL] [Abstract][Full Text] [Related]  

  • 22. In situ measurements of the oblique incidence sound absorption coefficient for finite sized absorbers.
    Ottink M; Brunskog J; Jeong CH; Fernandez-Grande E; Trojgaard P; Tiana-Roig E
    J Acoust Soc Am; 2016 Jan; 139(1):41-52. PubMed ID: 26827003
    [TBL] [Abstract][Full Text] [Related]  

  • 23. In-vitro and in-vivo evaluation of enteric-coated starch-based pellets prepared via extrusion/spheronisation.
    Dukić-Ott A; De Beer T; Remon JP; Baeyens W; Foreman P; Vervaet C
    Eur J Pharm Biopharm; 2008 Sep; 70(1):302-12. PubMed ID: 18579353
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Volume measurement of cryogenic deuterium pellets by Bayesian analysis of single shadowgraphy images.
    Szepesi T; Kálvin S; Kocsis G; Lang PT; Wittmann C
    Rev Sci Instrum; 2008 Mar; 79(3):033501. PubMed ID: 18377004
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A mathematical model to predict the size of the pellets formed in freeze pelletization techniques: parameters affecting pellet size.
    Cheboyina S; O'Haver J; Wyandt CM
    J Pharm Sci; 2006 Jan; 95(1):167-80. PubMed ID: 16315219
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Identification of Material Parameters for the Simulation of Acoustic Absorption of Fouled Sintered Fiber Felts.
    Lippitz N; Blech C; Langer S; Rösler J
    Materials (Basel); 2016 Aug; 9(8):. PubMed ID: 28773829
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Model for heat and mass transfer in freeze-drying of pellets.
    Trelea IC; Passot S; Marin M; Fonseca F
    J Biomech Eng; 2009 Jul; 131(7):074501. PubMed ID: 19640137
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Sound absorption of cellular metals with semiopen cells.
    Lu TJ; Chen F; He D
    J Acoust Soc Am; 2000 Oct; 108(4):1697-709. PubMed ID: 11051497
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Normalized inverse characterization of sound absorbing rigid porous media.
    Zieliński TG
    J Acoust Soc Am; 2015 Jun; 137(6):3232-43. PubMed ID: 26093413
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Absorption and impedance boundary conditions for phased geometrical-acoustics methods.
    Jeong CH
    J Acoust Soc Am; 2012 Oct; 132(4):2347-58. PubMed ID: 23039431
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Diffuse Sound Absorptive Properties of Parallel-Arranged Perforated Plates with Extended Tubes and Porous Materials.
    Li D; Chang D; Liu B
    Materials (Basel); 2020 Mar; 13(5):. PubMed ID: 32121579
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Deterministic and statistical characterization of rigid frame porous materials from impedance tube measurements.
    Niskanen M; Groby JP; Duclos A; Dazel O; Le Roux JC; Poulain N; Huttunen T; Lähivaara T
    J Acoust Soc Am; 2017 Oct; 142(4):2407. PubMed ID: 29092615
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Enhancing rigid frame porous layer absorption with three-dimensional periodic irregularities.
    Groby JP; Brouard B; Dazel O; Nennig B; Kelders L
    J Acoust Soc Am; 2013 Feb; 133(2):821-31. PubMed ID: 23363101
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A method to determine the acoustic reflection and absorption coefficients of porous media by using modal dispersion in a waveguide.
    Prisutova J; Horoshenkov K; Groby JP; Brouard B
    J Acoust Soc Am; 2014 Dec; 136(6):2947. PubMed ID: 25480044
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Influence of sorption on sound propagation in granular activated carbon.
    Venegas R; Umnova O
    J Acoust Soc Am; 2016 Aug; 140(2):755. PubMed ID: 27586708
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effects of pellet characteristics on L-lactic acid fermentation by R. oryzae: pellet morphology, diameter, density, and interior structure.
    Fu YQ; Yin LF; Zhu HY; Jiang R; Li S; Xu Q
    Appl Biochem Biotechnol; 2014 Nov; 174(6):2019-30. PubMed ID: 25163881
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Porous spherical calcium aluminate-supported CaO-based pellets manufactured via biomass-templated extrusion-spheronization technique for cyclic CO
    Li H; Hu Y; Chen H; Qu M
    Environ Sci Pollut Res Int; 2019 Jul; 26(21):21972-21982. PubMed ID: 31144177
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Prediction of sound absorption by a circular orifice termination in a turbulent pipe flow using the Lattice-Boltzmann method.
    Habibi K; Mongeau L
    Appl Acoust; 2015 Jan; 87():153-161. PubMed ID: 32317805
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Expanding the strong absorption band by impedance matched mosquito-coil-like acoustic metamaterials.
    Hou M; Wu J; Yang S; Wu JH; Ma F
    Rev Sci Instrum; 2020 Feb; 91(2):025102. PubMed ID: 32113386
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Ultrathin Carbon Molecular Sieve Films and Room-Temperature Oxygen Functionalization for Gas-Sieving.
    Huang S; Villalobos LF; Babu DJ; He G; Li M; Züttel A; Agrawal KV
    ACS Appl Mater Interfaces; 2019 May; 11(18):16729-16736. PubMed ID: 30990645
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.