These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
157 related articles for article (PubMed ID: 32326223)
1. Microstructural and Very High Cycle Fatigue (VHCF) Behavior of Ti6Al4V-A Comparative Study. Jebieshia TR; Kim JM; Kang JW; Son SW; Kim HD Materials (Basel); 2020 Apr; 13(8):. PubMed ID: 32326223 [TBL] [Abstract][Full Text] [Related]
2. Analysis of fatigue properties and failure mechanisms of Ti6Al4V in the very high cycle fatigue regime using ultrasonic technology and 3D laser scanning vibrometry. Heinz S; Balle F; Wagner G; Eifler D Ultrasonics; 2013 Dec; 53(8):1433-40. PubMed ID: 23545114 [TBL] [Abstract][Full Text] [Related]
3. Internal Crack Initiation and Growth Starting from Artificially Generated Defects in Additively Manufactured Ti6Al4V Specimen in the VHCF Regime. Wickmann C; Benz C; Heyer H; Witte-Bodnar K; Schäfer J; Sander M Materials (Basel); 2021 Sep; 14(18):. PubMed ID: 34576539 [TBL] [Abstract][Full Text] [Related]
4. Thermal oxidation of medical Ti6Al4V blasted with ceramic particles: Effects on the microstructure, residual stresses and mechanical properties. Lieblich M; Barriuso S; Multigner M; González-Doncel G; González-Carrasco JL J Mech Behav Biomed Mater; 2016 Feb; 54():173-84. PubMed ID: 26458115 [TBL] [Abstract][Full Text] [Related]
5. TIG welding of Ti6Al4V alloy: Microstructure, fractography, tensile and microhardness data. Omoniyi P; Mahamood M; Jen TC; Akinlabi E Data Brief; 2021 Oct; 38():107274. PubMed ID: 34430682 [TBL] [Abstract][Full Text] [Related]
6. Mechanical and chemical analyses across dental porcelain fused to CP titanium or Ti6Al4V. Souza JC; Henriques B; Ariza E; Martinelli AE; Nascimento RM; Silva FS; Rocha LA; Celis JP Mater Sci Eng C Mater Biol Appl; 2014 Apr; 37():76-83. PubMed ID: 24582225 [TBL] [Abstract][Full Text] [Related]
7. Fabrication, Structure and Mechanical and Ultrasonic Properties of Medical Ti6Al4V Alloys Part I: Microstructure and Mechanical Properties of Ti6Al4V Alloys Suitable for Ultrasonic Scalpel. He Z; He H; Lou J; Li Y; Li D; Chen Y; Liu S Materials (Basel); 2020 Jan; 13(2):. PubMed ID: 31963880 [TBL] [Abstract][Full Text] [Related]
8. Effect of GO content on microstructure and mechanical properties of Ti6Al4V coating reinforced artificial joint. Gong Y; Cui C; Wu M; He R; Jie D; Miao X Proc Inst Mech Eng H; 2023 Nov; 237(11):1306-1317. PubMed ID: 37776142 [TBL] [Abstract][Full Text] [Related]
9. Internal crack characteristics in very-high-cycle fatigue of a gradient structured titanium alloy. Pan X; Qian G; Wu S; Fu Y; Hong Y Sci Rep; 2020 Mar; 10(1):4742. PubMed ID: 32179764 [TBL] [Abstract][Full Text] [Related]
10. Effect of the Heat-Treated Ti6Al4V Alloy on the Fibroblastic Cell Response. Chávez-Díaz MP; Escudero-Rincón ML; Arce-Estrada EM; Cabrera-Sierra R Materials (Basel); 2017 Dec; 11(1):. PubMed ID: 29301205 [TBL] [Abstract][Full Text] [Related]
11. The influence of temperature during water-quench rapid heat treatment on the microstructure, mechanical properties and biocompatibility of Ti6Al4V ELI alloy. Chafino JA; Yamanaka K; Mercier F; Rivory P; Balvay S; Hartmann DJ; Chiba A; Fabregue D J Mech Behav Biomed Mater; 2019 Aug; 96():144-151. PubMed ID: 31035065 [TBL] [Abstract][Full Text] [Related]
12. On Strain-Hardening Behavior and Ductility of Laser Powder Bed-Fused Ti6Al4V Alloy Heat-Treated above and below the β-Transus. Cerri E; Ghio E Materials (Basel); 2024 Jul; 17(14):. PubMed ID: 39063691 [TBL] [Abstract][Full Text] [Related]
13. Influence of Material Microstructures in Micromilling of Ti6Al4V Alloy. Attanasio A; Gelfi M; Pola A; Ceretti E; Giardini C Materials (Basel); 2013 Sep; 6(9):4268-4283. PubMed ID: 28788331 [TBL] [Abstract][Full Text] [Related]
14. Effect of Residual Stress on S-N Curves and Fracture Morphology of Ti6Al4V Titanium Alloy after Laser Shock Peening without Protective Coating. Pan X; Li X; Zhou L; Feng X; Luo S; He W Materials (Basel); 2019 Nov; 12(22):. PubMed ID: 31752327 [TBL] [Abstract][Full Text] [Related]
15. Fatigue behavior of Ti-6Al-4V alloy in saline solution with the surface modified at a micro- and nanoscale by chemical treatment. Claros CAE; Oliveira DP; Campanelli LC; Pereira da Silva PSC; Bolfarini C Mater Sci Eng C Mater Biol Appl; 2016 Oct; 67():425-432. PubMed ID: 27287139 [TBL] [Abstract][Full Text] [Related]
16. Influence of Heat Treatment on Cyclic Response of Nickel-Based Superalloy Inconel 718 up to Very-High Cycle Regime. Zhao M; Zhao Z; Liu L; Luo G; Chen W Materials (Basel); 2020 Nov; 13(23):. PubMed ID: 33255929 [TBL] [Abstract][Full Text] [Related]
17. Effect of Various Peening Methods on the Fatigue Properties of Titanium Alloy Ti6Al4V Manufactured by Direct Metal Laser Sintering and Electron Beam Melting. Soyama H; Takeo F Materials (Basel); 2020 May; 13(10):. PubMed ID: 32408590 [TBL] [Abstract][Full Text] [Related]
18. Osteoblast Cell Response on the Ti6Al4V Alloy Heat-Treated. Chávez-Díaz MP; Escudero-Rincón ML; Arce-Estrada EM; Cabrera-Sierra R Materials (Basel); 2017 Apr; 10(4):. PubMed ID: 28772804 [TBL] [Abstract][Full Text] [Related]
19. Fatigue performance of medical Ti6Al4V alloy after mechanical surface treatments. Sonntag R; Reinders J; Gibmeier J; Kretzer JP PLoS One; 2015; 10(3):e0121963. PubMed ID: 25823001 [TBL] [Abstract][Full Text] [Related]
20. Effect of Low Cycle Fatigue Predamage on Very High Cycle Fatigue Behavior of TC21 Titanium Alloy. Nie B; Zhao Z; Ouyang Y; Chen D; Chen H; Sun H; Liu S Materials (Basel); 2017 Dec; 10(12):. PubMed ID: 29207556 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]