These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 32326258)

  • 1. An Experimental and Computational Study of the High-Velocity Impact of Low-Density Aluminum Foam.
    Borovinšek M; Vesenjak M; Hokamoto K; Ren Z
    Materials (Basel); 2020 Apr; 13(8):. PubMed ID: 32326258
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Anisotropic Compressive Behavior of Functionally Density Graded Aluminum Foam Prepared by Controlled Melt Foaming Process.
    Zhang B; Hu S; Fan Z
    Materials (Basel); 2018 Dec; 11(12):. PubMed ID: 30563081
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamic Compressive Behaviors of Two-Layer Graded Aluminum Foams under Blast Loading.
    Liang M; Li X; Lin Y; Zhang K; Lu F
    Materials (Basel); 2019 May; 12(9):. PubMed ID: 31058872
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanical Properties and Constitutive Model Applied to the High-Speed Impact of Aluminum Foam That Considers Its Meso-Structural Parameters.
    Guo Q; Li W; Yao W; Wang X; Huang C
    Materials (Basel); 2021 Oct; 14(20):. PubMed ID: 34683799
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deformation and Plateau Region of Functionally Graded Aluminum Foam by Amount Combinations of Added Blowing Agent.
    Hangai Y; Utsunomiya T; Kuwazuru O; Kitahara S; Yoshikawa N
    Materials (Basel); 2015 Oct; 8(10):7161-7168. PubMed ID: 28793626
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Compressive Behavior of Aluminum Microfibers Reinforced Semi-Rigid Polyurethane Foams.
    Linul E; Vălean C; Linul PA
    Polymers (Basel); 2018 Nov; 10(12):. PubMed ID: 30961223
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Numerical Modeling and Experimental Behavior of Closed-Cell Aluminum Foam Fabricated by the Gas Blowing Method under Compressive Loading.
    Sharma V; Zivic F; Grujovic N; Babcsan N; Babcsan J
    Materials (Basel); 2019 May; 12(10):. PubMed ID: 31096552
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Methods to mitigate injury to toddlers in near-side impact crashes.
    Kapoor T; Altenhof W; Howard A; Rasico J; Zhu F
    Accid Anal Prev; 2008 Nov; 40(6):1880-92. PubMed ID: 19068290
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Micro-scale finite element modeling of ultrasound propagation in aluminum trabecular bone-mimicking phantoms: A comparison between numerical simulation and experimental results.
    Vafaeian B; Le LH; Tran TN; El-Rich M; El-Bialy T; Adeeb S
    Ultrasonics; 2016 May; 68():17-28. PubMed ID: 26894840
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Finite Element Analysis of Aluminum Honeycombs Subjected to Dynamic Indentation and Compression Loads.
    Ashab ASMA; Ruan D; Lu G; Bhuiyan AA
    Materials (Basel); 2016 Mar; 9(3):. PubMed ID: 28773288
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Experimental Tests and Numerical Simulations on the Ballistic Impact Response of a Highly Inhomogeneous Aluminium Foam.
    Brekken KA; Vestrum O; Dey S; Reyes A; Børvik T
    Materials (Basel); 2022 Jul; 15(13):. PubMed ID: 35806772
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Static Mechanical Properties of Expanded Polypropylene Crushable Foam.
    Rumianek P; Dobosz T; Nowak R; Dziewit P; Aromiński A
    Materials (Basel); 2021 Jan; 14(2):. PubMed ID: 33419072
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Early Compressive Deformation of Closed-Cell Aluminum Foam Based on a Three-Dimensional Realistic Structure.
    Wan X; Zhu K; Xu Y; Han B; Jing T
    Materials (Basel); 2019 Jun; 12(11):. PubMed ID: 31163578
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Controlled Shrinkage of Expanded Glass Particles in Metal Syntactic Foams.
    Al-Sahlani K; Taherishargh M; Kisi E; Fiedler T
    Materials (Basel); 2017 Sep; 10(9):. PubMed ID: 28902158
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Experimental and Numerical Investigations of High-Speed Projectile Impacts on 7075-T651 Aluminum Plates.
    Jung JW; Lee SE; Hong JW
    Materials (Basel); 2019 Aug; 12(17):. PubMed ID: 31455008
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Material characterization and computer model simulation of low density polyurethane foam used in a rodent traumatic brain injury model.
    Zhang L; Gurao M; Yang KH; King AI
    J Neurosci Methods; 2011 May; 198(1):93-8. PubMed ID: 21459114
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanical Behaviour of Pin-Reinforced Foam Core Sandwich Panels Subjected to Low Impact Loading.
    Farokhi Nejad A; Rahimian Koloor SS; Syed Hamzah SMSA; Yahya MY
    Polymers (Basel); 2021 Oct; 13(21):. PubMed ID: 34771183
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Calibration of crushable foam plasticity models for synthetic bone material for use in finite element analysis of acetabular cup deformation and primary stability.
    Schulze C; Vogel D; Sander M; Bader R
    Comput Methods Biomech Biomed Engin; 2019 Jan; 22(1):25-37. PubMed ID: 30449160
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of Orientation and Radiative Heat Transfer on Aluminum Foams in Buoyancy-Induced Convection.
    Billiet M; De Schampheleire S; Huisseune H; De Paepe M
    Materials (Basel); 2015 Oct; 8(10):6792-6805. PubMed ID: 28793601
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Designing safer composite helmets to reduce rotational accelerations during oblique impacts.
    Mosleh Y; Cajka M; Depreitere B; Vander Sloten J; Ivens J
    Proc Inst Mech Eng H; 2018 May; 232(5):479-491. PubMed ID: 29543121
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.