These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 32326286)

  • 1. Spatially Resolved Effects of Protein Freeze-Thawing in a Small-Scale Model Using Monoclonal Antibodies.
    Spadiut O; Gundinger T; Pittermann B; Slouka C
    Pharmaceutics; 2020 Apr; 12(4):. PubMed ID: 32326286
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of buffer composition and processing conditions on aggregation of bovine IgG during freeze-drying.
    Sarciaux JM; Mansour S; Hageman MJ; Nail SL
    J Pharm Sci; 1999 Dec; 88(12):1354-61. PubMed ID: 10585234
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of freezing and thawing rates on denaturation of proteins in aqueous solutions.
    Cao E; Chen Y; Cui Z; Foster PR
    Biotechnol Bioeng; 2003 Jun; 82(6):684-90. PubMed ID: 12673768
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Novel Mechanism of Glass Delamination in Type 1A Borosilicate Vials Containing Frozen Protein Formulations.
    Jiang G; Goss M; Li G; Jing W; Shen H; Fujimori K; Le L; Wong L; Wen ZQ; Nashed-Samuel Y; Riker K; Germansderfer A; Tsang P; Ricci M
    PDA J Pharm Sci Technol; 2013; 67(4):323-35. PubMed ID: 23872443
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of solution conditions, processing parameters, and container materials on aggregation of a monoclonal antibody during freeze-thawing.
    Kueltzo LA; Wang W; Randolph TW; Carpenter JF
    J Pharm Sci; 2008 May; 97(5):1801-12. PubMed ID: 17823949
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mapping of solution components, pH changes, protein stability and the elimination of protein precipitation during freeze-thawing of fibroblast growth factor 20.
    Maity H; Karkaria C; Davagnino J
    Int J Pharm; 2009 Aug; 378(1-2):122-35. PubMed ID: 19505546
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of glycine on pH changes and protein stability during freeze-thawing in phosphate buffer systems.
    Pikal-Cleland KA; Cleland JL; Anchordoquy TJ; Carpenter JF
    J Pharm Sci; 2002 Sep; 91(9):1969-79. PubMed ID: 12210044
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impact of Buffer, Protein Concentration and Sucrose Addition on the Aggregation and Particle Formation during Freezing and Thawing.
    Hauptmann A; Podgoršek K; Kuzman D; Srčič S; Hoelzl G; Loerting T
    Pharm Res; 2018 Mar; 35(5):101. PubMed ID: 29556730
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lyophilization-induced protein denaturation in phosphate buffer systems: monomeric and tetrameric beta-galactosidase.
    Pikal-Cleland KA; Carpenter JF
    J Pharm Sci; 2001 Sep; 90(9):1255-68. PubMed ID: 11745778
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Protein denaturation during freezing and thawing in phosphate buffer systems: monomeric and tetrameric beta-galactosidase.
    Pikal-Cleland KA; Rodríguez-Hornedo N; Amidon GL; Carpenter JF
    Arch Biochem Biophys; 2000 Dec; 384(2):398-406. PubMed ID: 11368330
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of Multiple Freeze-Thaw Cycles on Biochemical and Physical Quality Changes of White Shrimp (Penaeus vannamei) Treated with Lysine and Sodium Bicarbonate.
    Wachirasiri K; Wanlapa S; Uttapap D; Puttanlek C; Rungsardthong V
    J Food Sci; 2019 Jul; 84(7):1784-1790. PubMed ID: 31218686
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Subvisible particle counting provides a sensitive method of detecting and quantifying aggregation of monoclonal antibody caused by freeze-thawing: insights into the roles of particles in the protein aggregation pathway.
    Barnard JG; Singh S; Randolph TW; Carpenter JF
    J Pharm Sci; 2011 Feb; 100(2):492-503. PubMed ID: 20803602
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fundamentals of freeze-drying.
    Nail SL; Jiang S; Chongprasert S; Knopp SA
    Pharm Biotechnol; 2002; 14():281-360. PubMed ID: 12189727
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Freeze-thaw stability of aluminum oxide nanoparticles.
    Trenkenschuh E; Friess W
    Int J Pharm; 2021 Sep; 606():120932. PubMed ID: 34310956
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Large-Scale Freeze-Thaw of Protein Solutions: Study of the Relative Contributions of Freeze-Concentration and Ice Surface Area on Stability of Lactate Dehydrogenase.
    Minatovicz B; Sansare S; Mehta T; Bogner RH; Chaudhuri B
    J Pharm Sci; 2023 Feb; 112(2):482-491. PubMed ID: 36162492
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural properties of monoclonal antibody aggregates induced by freeze-thawing and thermal stress.
    Hawe A; Kasper JC; Friess W; Jiskoot W
    Eur J Pharm Sci; 2009 Sep; 38(2):79-87. PubMed ID: 19540340
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A single freeze-thawing cycle for highly efficient solubilization of inclusion body proteins and its refolding into bioactive form.
    Qi X; Sun Y; Xiong S
    Microb Cell Fact; 2015 Feb; 14():24. PubMed ID: 25879903
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reversible Self-Association in Lactate Dehydrogenase during Freeze-Thaw in Buffered Solutions Using Neutron Scattering.
    Sonje J; Thakral S; Krueger S; Suryanarayanan R
    Mol Pharm; 2021 Dec; 18(12):4459-4474. PubMed ID: 34709831
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design of experiments reveals critical parameters for pilot-scale freeze-and-thaw processing of L-lactic dehydrogenase.
    Roessl U; Humi S; Leitgeb S; Nidetzky B
    Biotechnol J; 2015 Sep; 10(9):1390-9. PubMed ID: 25820483
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Freeze concentration during freezing: How does the maximally freeze concentrated solution influence protein stability?
    Seifert I; Friess W
    Int J Pharm; 2020 Nov; 589():119810. PubMed ID: 32866649
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.