BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 32326313)

  • 1. The Effect of Ethanol on Gelation, Nanoscopic, and Macroscopic Properties of Serum Albumin Hydrogels.
    Arabi SH; Haselberger D; Hinderberger D
    Molecules; 2020 Apr; 25(8):. PubMed ID: 32326313
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Macro- and Nanoscale Effect of Ethanol on Bovine Serum Albumin Gelation and Naproxen Release.
    Sanaeifar N; Mäder K; Hinderberger D
    Int J Mol Sci; 2022 Jul; 23(13):. PubMed ID: 35806356
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Serum albumin hydrogels in broad pH and temperature ranges: characterization of their self-assembled structures and nanoscopic and macroscopic properties.
    Arabi SH; Aghelnejad B; Schwieger C; Meister A; Kerth A; Hinderberger D
    Biomater Sci; 2018 Feb; 6(3):478-492. PubMed ID: 29446432
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanoscopic Characterization of Stearic Acid Release from Bovine Serum Albumin Hydrogels.
    Sanaeifar N; Mäder K; Hinderberger D
    Macromol Biosci; 2020 Aug; 20(8):e2000126. PubMed ID: 32567224
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rheological study of albumin and hyaluronan-albumin hydrogels: Effect of concentration, ionic strength, pH and molecular weight.
    Hájovská P; Chytil M; Kalina M
    Int J Biol Macromol; 2020 Oct; 161():738-745. PubMed ID: 32534090
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Injectable Biocompatible Hydrogels from Cellulose Nanocrystals for Locally Targeted Sustained Drug Release.
    Bertsch P; Schneider L; Bovone G; Tibbitt MW; Fischer P; Gstöhl S
    ACS Appl Mater Interfaces; 2019 Oct; 11(42):38578-38585. PubMed ID: 31573787
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Heat- and pH-induced BSA conformational changes, hydrogel formation and application as 3D cell scaffold.
    Navarra G; Peres C; Contardi M; Picone P; San Biagio PL; Di Carlo M; Giacomazza D; Militello V
    Arch Biochem Biophys; 2016 Sep; 606():134-42. PubMed ID: 27480606
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multifunctional alginate-based hydrogel with reversible crosslinking for controlled therapeutics delivery.
    Batool SR; Nazeer MA; Ekinci D; Sahin A; Kizilel S
    Int J Biol Macromol; 2020 May; 150():315-325. PubMed ID: 32035960
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermoresponsive BSA hydrogels with phase tunability.
    Khanna S; Singh AK; Behera SP; Gupta S
    Mater Sci Eng C Mater Biol Appl; 2021 Feb; 119():111590. PubMed ID: 33321635
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tuning Human Serum Albumin (HSA) Hydrogels through Albumin Glycation.
    Volmer J; Arabi SH; Henning C; Glomb MA; Hinderberger D
    Macromol Biosci; 2023 Mar; 23(3):e2200487. PubMed ID: 36543753
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Injectable hydrogels based on the hyaluronic acid and poly (γ-glutamic acid) for controlled protein delivery.
    Ma X; Xu T; Chen W; Qin H; Chi B; Ye Z
    Carbohydr Polym; 2018 Jan; 179():100-109. PubMed ID: 29111032
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chitosan-Based Thermo/pH Double Sensitive Hydrogel for Controlled Drug Delivery.
    Bai X; Bao Z; Bi S; Li Y; Yu X; Hu S; Tian M; Zhang X; Cheng X; Chen X
    Macromol Biosci; 2018 Mar; 18(3):. PubMed ID: 29369479
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exploring the inner environment of protein hydrogels with fluorescence spectroscopy towards understanding their drug delivery capabilities.
    Nandi R; Yucknovsky A; Mazo MM; Amdursky N
    J Mater Chem B; 2020 Aug; 8(31):6964-6974. PubMed ID: 32500877
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of thermosensitive chitosan-based hydrogels by rheology and electron paramagnetic resonance spectroscopy.
    Kempe S; Metz H; Bastrop M; Hvilsom A; Contri RV; Mäder K
    Eur J Pharm Biopharm; 2008 Jan; 68(1):26-33. PubMed ID: 17870449
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Engineering highly swellable dual-responsive protein-based injectable hydrogels: the effects of molecular structure and composition in vivo.
    Phan VHG; Thambi T; Kim BS; Huynh DP; Lee DS
    Biomater Sci; 2017 Oct; 5(11):2285-2294. PubMed ID: 29019478
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydrogels from serum albumin in a molten globule-like state.
    Arabi SH; Aghelnejad B; Volmer J; Hinderberger D
    Protein Sci; 2020 Dec; 29(12):2459-2467. PubMed ID: 33058378
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Preparation of Bovine Serum Albumin (BSA) nanoparticles by desolvation using a membrane contactor: a new tool for large scale production.
    Yedomon B; Fessi H; Charcosset C
    Eur J Pharm Biopharm; 2013 Nov; 85(3 Pt A):398-405. PubMed ID: 23811438
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modeling the controllable pH-responsive swelling and pore size of networked alginate based biomaterials.
    Chan AW; Neufeld RJ
    Biomaterials; 2009 Oct; 30(30):6119-29. PubMed ID: 19660810
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genipin-crosslinked casein hydrogels for controlled drug delivery.
    Song F; Zhang LM; Yang C; Yan L
    Int J Pharm; 2009 May; 373(1-2):41-7. PubMed ID: 19429286
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Human Albumin-Based Hydrogels for Their Potential Xeno-Free Microneedle Applications.
    Rong X; Mehwish N; Niu X; Zhu N; Lee BH
    Macromol Biosci; 2023 Mar; 23(3):e2200463. PubMed ID: 36563292
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.