BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 32326377)

  • 1. STAT5 is Expressed in CD34
    Hadzijusufovic E; Keller A; Berger D; Greiner G; Wingelhofer B; Witzeneder N; Ivanov D; Pecnard E; Nivarthi H; Schur FKM; Filik Y; Kornauth C; Neubauer HA; Müllauer L; Tin G; Park J; de Araujo ED; Gunning PT; Hoermann G; Gouilleux F; Kralovics R; Moriggl R; Valent P
    Cancers (Basel); 2020 Apr; 12(4):. PubMed ID: 32326377
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phenotypic characterization of disease-initiating stem cells in JAK2- or CALR-mutated myeloproliferative neoplasms.
    Ivanov D; Milosevic Feenstra JD; Sadovnik I; Herrmann H; Peter B; Willmann M; Greiner G; Slavnitsch K; Hadzijusufovic E; Rülicke T; Dahlhoff M; Hoermann G; Machherndl-Spandl S; Eisenwort G; Fillitz M; Sliwa T; Krauth MT; Bettelheim P; Sperr WR; Koller E; Pfeilstöcker M; Gisslinger H; Keil F; Kralovics R; Valent P
    Am J Hematol; 2023 May; 98(5):770-783. PubMed ID: 36814396
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The involvement of Galectins in the modulation of the JAK/STAT pathway in myeloproliferative neoplasia.
    Koopmans SM; Bot FJ; Schouten HC; Janssen J; van Marion AM
    Am J Blood Res; 2012; 2(2):119-27. PubMed ID: 22762031
    [TBL] [Abstract][Full Text] [Related]  

  • 4. PD-L1 overexpression correlates with JAK2-V617F mutational burden and is associated with 9p uniparental disomy in myeloproliferative neoplasms.
    Milosevic Feenstra JD; Jäger R; Schischlik F; Ivanov D; Eisenwort G; Rumi E; Schuster M; Gisslinger B; Machherndl-Spandl S; Bettelheim P; Krauth MT; Keil F; Bock C; Cazzola M; Gisslinger H; Kralovics R; Valent P
    Am J Hematol; 2022 Apr; 97(4):390-400. PubMed ID: 35015307
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ectopic PD-L1 expression in JAK2 (V617F) myeloproliferative neoplasm patients is mediated via increased activation of STAT3 and STAT5.
    Guru SA; Sumi MP; Mir R; Waza AA; Bhat MA; Zuberi M; Lali P; Saxena A
    Hum Cell; 2020 Oct; 33(4):1099-1111. PubMed ID: 32430672
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bone marrow phospho-STAT5 expression in non-CML chronic myeloproliferative disorders correlates with JAK2 V617F mutation and provides evidence of in vivo JAK2 activation.
    Aboudola S; Murugesan G; Szpurka H; Ramsingh G; Zhao X; Prescott N; Tubbs RR; Maciejewski JP; Hsi ED
    Am J Surg Pathol; 2007 Feb; 31(2):233-9. PubMed ID: 17255768
    [TBL] [Abstract][Full Text] [Related]  

  • 7. pSTAT3/pSTAT5 Signaling Patterns in Molecularly Defined Subsets of Myeloproliferative Neoplasms.
    Sakr H; Clark Schneider K; Murugesan G; Bodo J; Hsi ED; Cook JR
    Appl Immunohistochem Mol Morphol; 2018 Feb; 26(2):147-152. PubMed ID: 27258562
    [TBL] [Abstract][Full Text] [Related]  

  • 8. MOLECULAR GENETIC ABNORMALITIES IN THE GENOME OF PATIENTS WITH Ph-NEGATIVE MYELOPROLIFERATIVE NEOPLASIA AFFECTED BY IONIZING RADIATION AS A RESULT OF THE CHORNOBYL NUCLEAR ACCIDENT.
    Poluben LO; Neumerzhytska LV; Klymenko SV; Fraenkel P; Balk C; Shumeiko OO
    Probl Radiac Med Radiobiol; 2020 Dec; 25():362-373. PubMed ID: 33361847
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Clinical Analysis of Driver Mutations in Patients with Ph Negative Myeloproliferative Neoplasms].
    He ZP; Tian HY; Tan M; Wu Y
    Zhongguo Shi Yan Xue Ye Xue Za Zhi; 2018 Jun; 26(3):842-848. PubMed ID: 29950230
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Changing concepts of diagnostic criteria of myeloproliferative disorders and the molecular etiology and classification of myeloproliferative neoplasms: from Dameshek 1950 to Vainchenker 2005 and beyond.
    Michiels JJ; Berneman Z; Schroyens W; De Raeve H
    Acta Haematol; 2015; 133(1):36-51. PubMed ID: 25116092
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular genetics of BCR-ABL1 negative myeloproliferative neoplasms in India.
    Rabade N; Subramanian PG; Kodgule R; Raval G; Joshi S; Chaudhary S; Mascarenhas R; Tembhare P; Gujral S; Patkar N
    Indian J Pathol Microbiol; 2018; 61(2):209-213. PubMed ID: 29676359
    [TBL] [Abstract][Full Text] [Related]  

  • 12. TERT rs2736100 A>C SNP and JAK2 46/1 haplotype significantly contribute to the occurrence of JAK2 V617F and CALR mutated myeloproliferative neoplasms - a multicentric study on 529 patients.
    Trifa AP; Bănescu C; Tevet M; Bojan A; Dima D; Urian L; Török-Vistai T; Popov VM; Zdrenghea M; Petrov L; Vasilache A; Murat M; Georgescu D; Popescu M; Pătrinoiu O; Balea M; Costache R; Coleș E; Șaguna C; Berbec N; Vlădăreanu AM; Mihăilă RG; Bumbea H; Cucuianu A; Popp RA
    Br J Haematol; 2016 Jul; 174(2):218-26. PubMed ID: 27061303
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CALR, JAK2, and MPL mutation profiles in patients with four different subtypes of myeloproliferative neoplasms: primary myelofibrosis, essential thrombocythemia, polycythemia vera, and myeloproliferative neoplasm, unclassifiable.
    Kim SY; Im K; Park SN; Kwon J; Kim JA; Lee DS
    Am J Clin Pathol; 2015 May; 143(5):635-44. PubMed ID: 25873496
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Angiogenesis and vascular endothelial growth factor-/receptor expression in myeloproliferative neoplasms: correlation with clinical parameters and JAK2-V617F mutational status.
    Medinger M; Skoda R; Gratwohl A; Theocharides A; Buser A; Heim D; Dirnhofer S; Tichelli A; Tzankov A
    Br J Haematol; 2009 Jul; 146(2):150-7. PubMed ID: 19466975
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mutational landscape of blast phase myeloproliferative neoplasms (MPN-BP) and antecedent MPN.
    Pasca S; Chifotides HT; Verstovsek S; Bose P
    Int Rev Cell Mol Biol; 2022; 366():83-124. PubMed ID: 35153007
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [JAK2 V617F and exon 12 genetic variations in Korean patients with BCR/ABL1-negative myeloproliferative neoplasms].
    Kim JT; Cho YG; Choi SI; Lee YJ; Kim HR; Jang SJ; Moon DS; Park YJ; Park G
    Korean J Lab Med; 2010 Dec; 30(6):567-74. PubMed ID: 21157140
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Analysis of CALR, JAK2 and MPL gene mutations in BCR-ABL negative myeloproliferative neoplasms].
    Ouyang Y; Qiao C; Wang J; Xiao L; Zhang S
    Zhonghua Yi Xue Za Zhi; 2015 May; 95(18):1369-73. PubMed ID: 26178351
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Study of CALR, MPL, and c-kit Gene Mutations in Thai Patients with JAK2 V617F Negative Myeloproliferative Neoplasms.
    Wiriyaukaradecha K; Nimsanor S; Tantirukdham N; Tongsom J; Bunyoo C; Soonklang K; Sritana N; Auewarakul C
    Asian Pac J Cancer Prev; 2022 May; 23(5):1671-1678. PubMed ID: 35633552
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Correlations between Janus kinase 2 V617F allele burdens and clinicohematologic parameters in myeloproliferative neoplasms.
    Ha JS; Kim YK; Jung SI; Jung HR; Chung IS
    Ann Lab Med; 2012 Nov; 32(6):385-91. PubMed ID: 23130336
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Discovery and evaluation of ZT55, a novel highly-selective tyrosine kinase inhibitor of JAK2
    Hu M; Xu C; Yang C; Zuo H; Chen C; Zhang D; Shi G; Wang W; Shi J; Zhang T
    J Exp Clin Cancer Res; 2019 Feb; 38(1):49. PubMed ID: 30717771
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.