These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 32326400)

  • 1. Recent Development on the Electrochemical Detection of Selected Pesticides: A Focused Review.
    Noori JS; Mortensen J; Geto A
    Sensors (Basel); 2020 Apr; 20(8):. PubMed ID: 32326400
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrochemical determination of bentazone using simple screen-printed carbon electrodes.
    Geto A; Noori JS; Mortensen J; Svendsen WE; Dimaki M
    Environ Int; 2019 Aug; 129():400-407. PubMed ID: 31152981
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Detection of Glyphosate in Drinking Water: A Fast and Direct Detection Method without Sample Pretreatment.
    Noori JS; Dimaki M; Mortensen J; Svendsen WE
    Sensors (Basel); 2018 Sep; 18(9):. PubMed ID: 30189680
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rapid and Sensitive Quantification of the Pesticide Lindane by Polymer Modified Electrochemical Sensor.
    Noori JS; Mortensen J; Geto A
    Sensors (Basel); 2021 Jan; 21(2):. PubMed ID: 33429929
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A paper-based electrochemical device for the detection of pesticides in aerosol phase inspired by nature: A flower-like origami biosensor for precision agriculture.
    Caratelli V; Fegatelli G; Moscone D; Arduini F
    Biosens Bioelectron; 2022 Jun; 205():114119. PubMed ID: 35231751
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrochemical detection of carbamate pesticides at conductive diamond electrodes.
    Rao TN; Loo BH; Sarada BV; Terashima C; Fujishima A
    Anal Chem; 2002 Apr; 74(7):1578-83. PubMed ID: 12033247
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biosensor technology for pesticides--a review.
    Verma N; Bhardwaj A
    Appl Biochem Biotechnol; 2015 Mar; 175(6):3093-119. PubMed ID: 25595494
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nanomaterials for Electrochemical Sensing and Decontamination of Pesticides.
    Viswanathan S; Manisankar P
    J Nanosci Nanotechnol; 2015 Sep; 15(9):6914-23. PubMed ID: 26716263
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Residues of organochlorine pesticides in surface soil and raw foods from rural areas of the Republic of Tajikistan.
    Barron MG; Ashurova ZJ; Kukaniev MA; Avloev HK; Khaidarov KK; Jamshedov JN; Rahmatullova OS; Atolikshoeva SS; Mamadshova SS; Manzenyuk O
    Environ Pollut; 2017 May; 224():494-502. PubMed ID: 28237311
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reagentless, Structure-Switching, Electrochemical Aptamer-Based Sensors.
    Schoukroun-Barnes LR; Macazo FC; Gutierrez B; Lottermoser J; Liu J; White RJ
    Annu Rev Anal Chem (Palo Alto Calif); 2016 Jun; 9(1):163-81. PubMed ID: 27070185
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microbial pesticide removal in rapid sand filters for drinking water treatment--potential and kinetics.
    Hedegaard MJ; Albrechtsen HJ
    Water Res; 2014 Jan; 48():71-81. PubMed ID: 24112625
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrochemical biosensor technology: application to pesticide detection.
    Palchetti I; Laschi S; Mascini M
    Methods Mol Biol; 2009; 504():115-26. PubMed ID: 19159094
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Technological advancement in electrochemical biosensor based detection of Organophosphate pesticide chlorpyrifos in the environment: A review of status and prospects.
    Uniyal S; Sharma RK
    Biosens Bioelectron; 2018 Sep; 116():37-50. PubMed ID: 29857260
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Targeted On-Demand Screening of Pesticide Panel in Soil Runoff.
    Dhamu VN; Sukumar S; Kadambathil CS; Muthukumar S; Prasad S
    Front Chem; 2021; 9():782252. PubMed ID: 34917590
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Silica nanoparticle based techniques for extraction, detection, and degradation of pesticides.
    Bapat G; Labade C; Chaudhari A; Zinjarde S
    Adv Colloid Interface Sci; 2016 Nov; 237():1-14. PubMed ID: 27780560
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Re-evaluation of groundwater monitoring data for glyphosate and bentazone by taking detection limits into account.
    Hansen CT; Ritz C; Gerhard D; Jensen JE; Streibig JC
    Sci Total Environ; 2015 Dec; 536():68-71. PubMed ID: 26196070
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrochemical aptamer-based sensors for food and water analysis: A review.
    Li F; Yu Z; Han X; Lai RY
    Anal Chim Acta; 2019 Mar; 1051():1-23. PubMed ID: 30661605
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spatial and temporal trends and flow dynamics of glyphosate and other pesticides within an agricultural watershed in Argentina.
    Pérez DJ; Okada E; De Gerónimo E; Menone ML; Aparicio VC; Costa JL
    Environ Toxicol Chem; 2017 Dec; 36(12):3206-3216. PubMed ID: 28631831
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Loss of pesticides from agricultural fields in SE Norway--runoff through surface and drainage water.
    Riise G; Lundekvam H; Wu QL; Haugen LE; Mulder J
    Environ Geochem Health; 2004; 26(2-3):269-76. PubMed ID: 15499783
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fluorescence detection of pesticides using quantum dot materials - A review.
    Nsibande SA; Forbes PB
    Anal Chim Acta; 2016 Nov; 945():9-22. PubMed ID: 27968720
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.