These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 32326441)

  • 1. An Indoor DFEC Ranging Method for Homologous Base Station Based on GPS L1 and BeiDou B1 Signals.
    Zhang H; Pan S; Sheng C; Gan X; Yu B; Huang L; Li Y
    Sensors (Basel); 2020 Apr; 20(8):. PubMed ID: 32326441
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Doppler Differential Positioning Technology Using the BDS/GPS Indoor Array Pseudolite System.
    Gan X; Yu B; Huang L; Jia R; Zhang H; Sheng C; Fan G; Wang B
    Sensors (Basel); 2019 Oct; 19(20):. PubMed ID: 31640250
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A New Cycle Slip Detection and Repair Method Using a Single Receiver's Single Station B1 and L1 Frequencies in Ground-Based Positioning Systems.
    Zhao X; Niu Z; Li G; Shuai Q; Zhu B
    Sensors (Basel); 2020 Jan; 20(2):. PubMed ID: 31936241
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An Optimal Multi-Channel Trilateration Localization Algorithm by Radio-Multipath Multi-Objective Evolution in RSS-Ranging-Based Wireless Sensor Networks.
    Fang X; Chen L
    Sensors (Basel); 2020 Mar; 20(6):. PubMed ID: 32213987
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An Innovative Fingerprint Location Algorithm for Indoor Positioning Based on Array Pseudolite.
    Huang L; Gan X; Yu B; Zhang H; Li S; Cheng J; Liang X; Wang B
    Sensors (Basel); 2019 Oct; 19(20):. PubMed ID: 31614855
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Indoor Positioning Algorithm Based on the Improved RSSI Distance Model.
    Li G; Geng E; Ye Z; Xu Y; Lin J; Pang Y
    Sensors (Basel); 2018 Aug; 18(9):. PubMed ID: 30150521
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An IMU-Aided Body-Shadowing Error Compensation Method for Indoor Bluetooth Positioning.
    Deng Z; Fu X; Wang H
    Sensors (Basel); 2018 Jan; 18(1):. PubMed ID: 29361718
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An intelligent indoor positioning system based on pedestrian directional signage object detection: a case study of Taipei Main Station.
    Yeh CC; Jhang KJ; Chang CC
    Math Biosci Eng; 2019 Oct; 17(1):266-285. PubMed ID: 31731351
    [TBL] [Abstract][Full Text] [Related]  

  • 9. HPIPS: A High-Precision Indoor Pedestrian Positioning System Fusing WiFi-RTT, MEMS, and Map Information.
    Huang L; Yu B; Li H; Zhang H; Li S; Zhu R; Li Y
    Sensors (Basel); 2020 Nov; 20(23):. PubMed ID: 33261188
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An RFID Indoor Positioning Algorithm Based on Bayesian Probability and K-Nearest Neighbor.
    Xu H; Ding Y; Li P; Wang R; Li Y
    Sensors (Basel); 2017 Aug; 17(8):. PubMed ID: 28783073
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An Improved Long-Period Precise Time-Relative Positioning Method Based on RTS Data.
    Lu Y; Ji S; Tu R; Weng D; Lu X; Chen W
    Sensors (Basel); 2020 Dec; 21(1):. PubMed ID: 33374254
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Indoor Positioning System Based on Global Positioning System Signals with Down- and Up-Converters in 433 MHz ISM Band.
    Uzun A; Ghani FA; Ahmadi Najafabadi AM; Yenigün H; Tekin İ
    Sensors (Basel); 2021 Jun; 21(13):. PubMed ID: 34201919
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Base Station Selection for Hybrid TDOA/RTT/DOA Positioning in Mixed LOS/NLOS Environment.
    Deng Z; Wang H; Zheng X; Yin L
    Sensors (Basel); 2020 Jul; 20(15):. PubMed ID: 32722324
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Pseudorange Measurement Scheme Based on Snapshot for Base Station Positioning Receivers.
    Mo J; Deng Z; Jia B; Bian X
    Sensors (Basel); 2017 Dec; 17(12):. PubMed ID: 29194356
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Constrained ESKF for UAV Positioning in Indoor Corridor Environment Based on IMU and WiFi.
    Li Z; Zhang Y
    Sensors (Basel); 2022 Jan; 22(1):. PubMed ID: 35009934
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An Indoor UWB 3D Positioning Method for Coplanar Base Stations.
    Zhou N; Si M; Li D; Seow CK; Mi J
    Sensors (Basel); 2022 Dec; 22(24):. PubMed ID: 36560002
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Hybrid Method to Improve the BLE-Based Indoor Positioning in a Dense Bluetooth Environment.
    Huang K; He K; Du X
    Sensors (Basel); 2019 Jan; 19(2):. PubMed ID: 30669629
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Indoor Carrier Phase Positioning Technology Based on OFDM System.
    Zhang Z; Kang S; Zhang X
    Sensors (Basel); 2021 Oct; 21(20):. PubMed ID: 34695943
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A New Method of High-Precision Positioning for an Indoor Pseudolite without Using the Known Point Initialization.
    Zhao Y; Zhang P; Guo J; Li X; Wang J; Yang F; Wang X
    Sensors (Basel); 2018 Jun; 18(6):. PubMed ID: 29925816
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Robust High-Accuracy Ultrasound Indoor Positioning System Based on a Wireless Sensor Network.
    Qi J; Liu GP
    Sensors (Basel); 2017 Nov; 17(11):. PubMed ID: 29113126
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.