These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 32326550)

  • 1. A Lightweight and Low-Power UAV-Borne Ground Penetrating Radar Design for Landmine Detection.
    Šipoš D; Gleich D
    Sensors (Basel); 2020 Apr; 20(8):. PubMed ID: 32326550
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comment on the Article "A Lightweight and Low-Power UAV-Borne Ground Penetrating Radar Design for Landmine Detection".
    Álvarez López Y; García Fernández M; Las-Heras Andrés F
    Sensors (Basel); 2020 May; 20(10):. PubMed ID: 32466327
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Method for Compensating Signal Attenuation Using Stepped-Frequency Ground Penetrating Radar.
    Liu T; Zhu Y; Su Y
    Sensors (Basel); 2018 Apr; 18(5):. PubMed ID: 29702614
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mapping of Agricultural Subsurface Drainage Systems Using Unmanned Aerial Vehicle Imagery and Ground Penetrating Radar.
    Koganti T; Ghane E; Martinez LR; Iversen BV; Allred BJ
    Sensors (Basel); 2021 Apr; 21(8):. PubMed ID: 33921184
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reply to Comments: A Lightweight and Low-Power UAV-Borne Ground Penetrating Radar Design for Landmine Detection.
    Šipoš D; Gleich D
    Sensors (Basel); 2020 May; 20(10):. PubMed ID: 32466314
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An Improved Modified Universal Ultra-Wideband Antenna Designed for Step Frequency Continuous Wave Ground Penetrating Radar System.
    Wu Y; Shen F; Yuan Y; Xu D
    Sensors (Basel); 2019 Mar; 19(5):. PubMed ID: 30823662
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Doppler Range Compensation for Step-Frequency Continuous-Wave Radar for Detecting Small UAV.
    Pieraccini M; Miccinesi L; Rojhani N
    Sensors (Basel); 2019 Mar; 19(6):. PubMed ID: 30884864
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Combining Electromagnetic Spectroscopy and Ground-Penetrating Radar for the Detection of Anti-Personnel Landmines.
    A Marsh L; van Verre W; L Davidson J; Gao X; J W Podd F; J Daniels D; J Peyton A
    Sensors (Basel); 2019 Aug; 19(15):. PubMed ID: 31382364
    [TBL] [Abstract][Full Text] [Related]  

  • 9. SFCW Radar with an Integrated Static Target Echo Cancellation System.
    Šipoš D; Gleich D
    Sensors (Basel); 2021 Aug; 21(17):. PubMed ID: 34502719
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Detection of soil physical properties of reclaimed land in open-pit mining area: feasibility of application of ground penetrating radar.
    Luo G; Cao Y; Xu H; Yang G; Wang S; Huang Y; Bai Z
    Environ Monit Assess; 2021 Jun; 193(7):392. PubMed ID: 34101032
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Utilizing Drone-Based Ground-Penetrating Radar for Crime Investigations in Localizing and Identifying Clandestine Graves.
    Lijcklama À Nijeholt L; Kronshorst TY; Teeffelen KV; van Manen B; Emaus R; Knotter J; Mersha A
    Sensors (Basel); 2023 Aug; 23(16):. PubMed ID: 37631665
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Unmanned Ariel Vehicle (UAV) Path Planning for Area Segmentation in Intelligent Landmine Detection Systems.
    Barnawi A; Kumar K; Kumar N; Thakur N; Alzahrani B; Almansour A
    Sensors (Basel); 2023 Aug; 23(16):. PubMed ID: 37631800
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sensor-Oriented Path Planning for Multiregion Surveillance with a Single Lightweight UAV SAR.
    Li J; Chen J; Wang P; Li C
    Sensors (Basel); 2018 Feb; 18(2):. PubMed ID: 29439447
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Some of Problems of Direction Finding of Ground-Based Radars Using Monopulse Location System Installed on Unmanned Aerial Vehicle.
    Rutkowski A; Kawalec A
    Sensors (Basel); 2020 Sep; 20(18):. PubMed ID: 32932950
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Application of a Drone Magnetometer System to Military Mine Detection in the Demilitarized Zone.
    Yoo LS; Lee JH; Lee YK; Jung SK; Choi Y
    Sensors (Basel); 2021 May; 21(9):. PubMed ID: 34063580
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Implementation of and Experimentation with Ground-Penetrating Radar for Real-Time Automatic Detection of Buried Improvised Explosive Devices.
    Srimuk P; Boonpoonga A; Kaemarungsi K; Athikulwongse K; Dentri S
    Sensors (Basel); 2022 Nov; 22(22):. PubMed ID: 36433308
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Performance test and verification of an off-the-shelf automated avian radar tracking system.
    May R; Steinheim Y; Kvaløy P; Vang R; Hanssen F
    Ecol Evol; 2017 Aug; 7(15):5930-5938. PubMed ID: 28811888
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Detection of tree roots and determination of root diameters by ground penetrating radar under optimal conditions.
    Barton CV; Montagu KD
    Tree Physiol; 2004 Dec; 24(12):1323-31. PubMed ID: 15465695
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Landmine detection and classification with complex-valued hybrid neural network using scattering parameters dataset.
    Yang CC; Bose NK
    IEEE Trans Neural Netw; 2005 May; 16(3):743-53. PubMed ID: 15941001
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Automotive Radar in a UAV to Assess Earth Surface Processes and Land Responses.
    Weber C; von Eichel-Streiber J; Rodrigo-Comino J; Altenburg J; Udelhoven T
    Sensors (Basel); 2020 Aug; 20(16):. PubMed ID: 32785058
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.