BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 32326640)

  • 41. Acceleration of apoptotic cell death after the cleavage of Bcl-XL protein by caspase-3-like proteases.
    Fujita N; Nagahashi A; Nagashima K; Rokudai S; Tsuruo T
    Oncogene; 1998 Sep; 17(10):1295-304. PubMed ID: 9771973
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Highly conserved caspase and Bcl-2 homologues from the sea anemone Aiptasia pallida: lower metazoans as models for the study of apoptosis evolution.
    Dunn SR; Phillips WS; Spatafora JW; Green DR; Weis VM
    J Mol Evol; 2006 Jul; 63(1):95-107. PubMed ID: 16770683
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Species-specific differences in the usage of several caspase substrates.
    Ussat S; Werner U; Adam-Klages S
    Biochem Biophys Res Commun; 2002 Oct; 297(5):1186-90. PubMed ID: 12372412
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Molecular mechanism of apoptosis: prediction of three-dimensional structure of caspase-6 and its interactions by homology modeling.
    Sattar R; Ali SA; Abbasi A
    Biochem Biophys Res Commun; 2003 Aug; 308(3):497-504. PubMed ID: 12914778
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Transcription factor AP-2alpha is preferentially cleaved by caspase 6 and degraded by proteasome during tumor necrosis factor alpha-induced apoptosis in breast cancer cells.
    Nyormoi O; Wang Z; Doan D; Ruiz M; McConkey D; Bar-Eli M
    Mol Cell Biol; 2001 Aug; 21(15):4856-67. PubMed ID: 11438643
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Functional conservation of the apoptotic machinery from coral to man: the diverse and complex Bcl-2 and caspase repertoires of Acropora millepora.
    Moya A; Sakamaki K; Mason BM; Huisman L; ForĂȘt S; Weiss Y; Bull TE; Tomii K; Imai K; Hayward DC; Ball EE; Miller DJ
    BMC Genomics; 2016 Jan; 17():62. PubMed ID: 26772977
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Caspase proteolysis of the cohesin component RAD21 promotes apoptosis.
    Chen F; Kamradt M; Mulcahy M; Byun Y; Xu H; McKay MJ; Cryns VL
    J Biol Chem; 2002 May; 277(19):16775-81. PubMed ID: 11875078
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Developing a powerful in silico tool for the discovery of novel caspase-3 substrates: a preliminary screening of the human proteome.
    Ayyash M; Tamimi H; Ashhab Y
    BMC Bioinformatics; 2012 Jan; 13():14. PubMed ID: 22269041
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Bcl-2 regulates a caspase-3/caspase-2 apoptotic cascade in cytosolic extracts.
    Swanton E; Savory P; Cosulich S; Clarke P; Woodman P
    Oncogene; 1999 Mar; 18(10):1781-7. PubMed ID: 10086332
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Protein C-terminal enzymatic labeling identifies novel caspase cleavages during the apoptosis of multiple myeloma cells induced by kinase inhibition.
    Duan W; Chen S; Zhang Y; Li D; Wang R; Chen S; Li J; Qiu X; Xu G
    Proteomics; 2016 Jan; 16(1):60-9. PubMed ID: 26552366
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Identification and characterization of a novel mammalian caspase with proapoptotic activity.
    Eckhart L; Ballaun C; Uthman A; Kittel C; Stichenwirth M; Buchberger M; Fischer H; Sipos W; Tschachler E
    J Biol Chem; 2005 Oct; 280(42):35077-80. PubMed ID: 16120609
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The insect peptide CopA3 blocks programmed cell death by directly binding caspases and inhibiting their proteolytic activation.
    Kim YH; Hwang JS; Yoon IN; Lee JH; Lee J; Park KC; Seok H; Kim H
    Biochem Biophys Res Commun; 2021 Apr; 547():82-88. PubMed ID: 33610044
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The adaptor molecule FADD from Xenopus laevis demonstrates evolutionary conservation of its pro-apoptotic activity.
    Sakamaki K; Takagi C; Kominami K; Sakata S; Yaoita Y; Kubota HY; Nozaki M; Yonehara S; Ueno N
    Genes Cells; 2004 Dec; 9(12):1249-64. PubMed ID: 15569156
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Conformational restrictions in the active site of unliganded human caspase-3.
    Ni CZ; Li C; Wu JC; Spada AP; Ely KR
    J Mol Recognit; 2003; 16(3):121-4. PubMed ID: 12833566
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Non-apoptotic functions of caspases in cellular proliferation and differentiation.
    Schwerk C; Schulze-Osthoff K
    Biochem Pharmacol; 2003 Oct; 66(8):1453-8. PubMed ID: 14555221
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Internally quenched fluorescent peptide substrates disclose the subsite preferences of human caspases 1, 3, 6, 7 and 8.
    Stennicke HR; Renatus M; Meldal M; Salvesen GS
    Biochem J; 2000 Sep; 350 Pt 2(Pt 2):563-8. PubMed ID: 10947972
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Caspases - controlling intracellular signals by protease zymogen activation.
    Stennicke HR; Salvesen GS
    Biochim Biophys Acta; 2000 Mar; 1477(1-2):299-306. PubMed ID: 10708865
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Current opinion on 3-[2-[(2-tert-butyl-phenylaminooxalyl)-amino]-propionylamino]- 4-oxo-5-(2,3,5,6-tetrafluoro-phenoxy)-pentanoic acid, an investigational drug targeting caspases and caspase-like proteases: the clinical trials in sight and recent anti-inflammatory advances.
    Haddad JJ
    Recent Pat Inflamm Allergy Drug Discov; 2013 Sep; 7(3):229-58. PubMed ID: 23859695
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Caspase-15 is autoprocessed at two sites that contain an aspartate residue in the P1' position.
    Eckhart L; Kittel C; Ballaun C; Tschachler E
    Biochem Biophys Res Commun; 2006 Dec; 350(4):955-9. PubMed ID: 17045244
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Cleavage of claspin by caspase-7 during apoptosis inhibits the Chk1 pathway.
    Clarke CA; Bennett LN; Clarke PR
    J Biol Chem; 2005 Oct; 280(42):35337-45. PubMed ID: 16123041
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.